240 likes | 255 Views
Implementing mapping composition techniques for integrating and evolving database schemas, exploring schema mappings, schema evolution, data integration, exchange, and constraints. This work presents new algorithms and strategies for mapping composition with experimental evaluations.
E N D
Implementing Mapping Composition Todd J. Green* University of Pennsylania with Philip A. Bernstein (Microsoft Research), Sergey Melnik (Microsoft Research), Alan Nash (UC San Diego) VLDB 2006 Seoul, Korea *Work partially supported by NSF grants IIS0513778 and IIS0415810
Schema mappings • Mapping: a correspondence between instances of different schemas Names SID, Name Students Name, Address m Addresses SID, Address S1 S2 Students Name,Address(Names ⋈ Addresses)
Names SID, Name Names SID, Name Local SID, Address Students Name, Address, Country Addresses SID, Address, Country Foreign SID, Address, Country Applications of mappings Names Names σCountry = KR(Addresses) SID,Address(Local)£{KR} σCountry KR(Addresses) Foreign • Schema evolution Students Name,Address,Country(Names ⋈ Addresses) ... m12 m23 S1 S2 S3
Applications of mappings • Data integration, data exchange Sn Addresses SID, Address, Country Names SID, Name ... m1 mn Students Name,Address (Names ⋈ Addresses) NamesNames Local SID,Address(Country = KR(Addresses)) Foreign Country KR(Addresses) S1 Sn−1 Foreign SID, Address, Country Students Name, Address, Country Names SID, Name Local SID, Address ...
Requirements for constraints • “First attribute in R is a key for R” 2,4(R ⋈1=3 R) µ2,2(R) • “View V equals R joined with S” VµR ⋈ S, V¶R ⋈ S • “Second attribute of R is a foreign key in S” 2(R) µ1(S) 2,4(S ⋈1=3 S) µ2,2(S) • Data integration, data exchange – GLAV R ⋈ S µT ⋈ U
Names Names σCountry = KR(Addresses) SID,Address(Local)£{KR} σCountry KR(Addresses) Foreign Students Name,Address, Country (Names⋈ (SID,Address(Local)£{KR} [ Foreign)) Names SID, Name Students Name,Address,Country(Names⋈Addresses) Names SID, Name Local SID, Address Students Name, Address, Country m12 m12 m23 m23 Addresses SID, Address, Country Foreign SID, Address, Country S2 Mapping composition S1 S3
Composition is hard • Hard part: write composition in the same language as the input mappings. Depending on language: • Not always possible • Not even decidable whether possible • Strategy 1: use powerful (second-order) mapping language closed under composition [FKPT04] • Not supported by DBMS today • Expensive to check • Source-target restriction • Strategy 2: settle for partial solutions [NBM05] • Containment mappings easier integration with DBMS • The strategy we adopt in this work
Our contributions • New algorithm for composition problem • Incorporates view unfolding and left-composition (new technique) • Makes best effort in failure cases • Algebraic rather than logic-based mappings • Use of monotonicity to handle more operators • Modular and extensible factoring of algorithm • First implementation of composition • Experimental evaluation
U(∙,∙,∙) S(∙,∙) V(∙,∙) m12 m23 R(∙,∙,∙) T(∙,∙) W(∙,∙) S ⊆(U), T= V – W S1 S2 S3 R⊆ S⋈T Formal definition of composition • Mapping: set of pairs of instances of db schemas • The composition m12 ± m23 is the mapping {hA,Ci : (9B)(hA,Bi2m12 and hB,Ci2m23)} where A,B,C are instances of S1,S2,S3 • Composition problem: find constraints in same language as input mappings giving the composition of the input mappings • Example: S1 = {R}, S2 = {S,T}, S3 = {U,V,W} R⊆S⋈T, S⊆(U), T=V – W ) R⊆(U)⋈(V - W)
Best-effort composition problem • Composition not always possible • “Best-effort” composition problem: compute set of constraints equivalent to input constraints, but with as many symbols from S2 eliminated as possible R⊆U, R⊆V, 1,4(2=3(UU))⊆U, 1,4(2=3(VV))⊆V, U⊆T, V⊆T Can eliminate U (cross out left column) or V(right column), but not both [NBM05]
Composition algorithm overview For each relation Rin S2 • Try to eliminate R via (1)view unfolding Replace = by pairs of ⊆, ⊇ For each relation R in S2 not yet eliminated • Try to eliminate Rvia (2)left compose • Else, try to eliminate R via (3)right compose Output: New constraints and list of relations successfully eliminated
(1) View unfolding • Idea: exploit equality constraints (if we have any) • Standard technique: substitute view definition for occurrences of view relation in mappings T=V – W, R⊆S ⋈T, TX⊆(U) R⊆S ⋈(V – W), (V – W) X⊆(U) • Body must not mention view relation itself • Doesn’t matter what else is in body • Can substitute everywhere
(2) Left compose • “View unfolding” for containment constraints (V) ⊆R – U, R⊆S ⋈ T (V) ⊆ (S ⋈T) – U • Needs monotonicity of expressions in R. E1⊆E2(R), R⊆E3´E1⊆E2(E3) if E2(R) is monotone in R(and R not in E3) • Partial check for monotonicity “Is S – (T – R) monotone in R?”
Normalization for left compose • Need one constraint of form R⊆E1 • Use identities to normalize, e.g.: • R⊆E1 and R⊆E2 iff R⊆E1E2 • E1E2⊆E3 iff E1⊆E3 and E2⊆E3 • (E1) ⊆E2 iff E1⊆E2Dr • More identities in paper • After left compose, try to eliminate D
(3) Right compose • Dual to left compose, from [NBM05] • Example: S ⋈TR, R – U(V) (S ⋈T) – U (V) • Monotonicity check needed here too • Normalization may introduce Skolem functions • E1(E2) iff f(E1) E2 • Must eliminate Skolem functions after composition • Lots of effort coding this step!
User-defined operators • User specifies: • Monotonicity of operator in its arguments “If E1 monotone in R and E2 antimonotone in R or independent of R, then E1 * E2 monotone in R” “if E1 monotone in R or independent of R and E2 antimonotone in R, then E1 * E2 monotone in R” • Identities for normalization “E1 * E2E3 iff E1E2E3 ” • User-defined operators and standard relational operators treated uniformly
Implementation • 12K lines of C# code, command-line tool # Test case 13: PODS05 example 2 SCHEMA R(2), S(2), T(2) CONSTRAINTS R <= S, P_{0,2} J_{0,1:1,2} (S S) <= R, S <= T ELIMINATE S; Output: P_{0,2} J_{0,1:1,2}(R R) <= R, R <= T
Experimental evaluation • First attempt at a composition benchmark • Schema editing and schema reconciliation scenarios • “Add a column to R to produce S”: (R) = S • Measure • % of symbols eliminated • Running time • As a function of • Editing primitives allowed, length of edit sequence, presence/absence of keys, starting schema size, … • Synthetic data
Summary of results • Algorithm often effective in eliminating most or even all relation symbols from S2 • Running time in subsecond range even for large problems containing hundreds of constraints • Certain schema editing primitives problematic • Key constraints did not reduce effectiveness, although did increase running time (and output size)
Schema editing • Random starting schema (30 relations of 2-10 attributes) • 100 random edits • 100 different runs, sorted by execution time
Schema reconciliation (1) • Random schema (30 relations of 2-10 attributes), random edits • Point represents median time of reconciliation step of 500 runs
Schema reconciliation (2) • Random schema (variable # relations of 2-10 attributes) • 100 random edits • 100 different runs, sorted by execution time
Related work • [MH03] J. Madhavan, A. Y. Halevy. Composing mappings among data sources. VLDB, 2003. • [FKPT04] R. Fagin, Ph. G. Kolaitis, L. Popa, W.C. Tan. Composing schema mappings: second-order dependencies to the rescue. PODS, 2004. • [NBM05] A. Nash, P. A. Bernstein, S. Melnik. Composition of mappings given by embedded dependencies. PODS, 2005.
Conclusion and future work • We motivated and described the mappingcomposition problem • We presented an implementation of a practical new algorithm for the composition problem • We also presented an experimental evaluation • To do: theoretical analysis of impact of user-defined operators • To do: output constraints from algorithm can be a mess! How to clean up?