370 likes | 393 Views
2dF Galaxy Redshift Survey ¼ M galaxies 2003. CFA Survey 1980. The Initial Fluctuations At Inflation: Gaussian, adiabatic a realization of an ensemble ensembe average ~ volume average. . . (. ). x. . . . fluctuation field. . (. ). x. . . . . . . .
E N D
2dF Galaxy Redshift Survey ¼ M galaxies 2003 CFA Survey 1980
The Initial Fluctuations At Inflation: Gaussian, adiabatic a realization of an ensemble ensembe average ~ volume average ( ) x fluctuation field ( ) x k i x ~ ( ) Fourier x ke Power Spectrum 2| ) n ( ) | ( P k k k k ~ 2 / K K K rms 2 3 3 3 ~ exp[ ( ) ' ] ' ~ i k k x d k d k d k k 0 0 ' k k k k ' 0 k k ( ) ' k k Dirac 2 / 2 3 ( 3 / ) 3 n 2| P d k M | k k k k 0 k δ Pk 3 / 2 1 n M / 1 2 0 n M 3 . n const M k
Scale-Invariant Spectrum (Harrison-Zel’dovich) R t mass MH t Horizon 3 2 a t H t m M time t 2 / 3 t 2 / 3 2 / 3 ( , ) M t M t H ( ) t M H . const H 1 n P k k 2 / 3 M M
Cosmological Scales mass ~ R ct MH t Horizon 3 2 a t m 3 a matter 4 a rad t0 teq time zeq~104
CDM Power Spectrum MH t mass H growth when matter is self- gravitating H H rad mass t time teq CDM 1 k Pk 2 / 3 3 M k CDM HDM HDM free streeming mass k kpeak m h Meq
Formation of Large-Scale Structure Fluctuation growth in the linear regime: rms fluctuation at mass scale M: Typical objects forming at t: ~ 1 / 2 t 6 3 1 a / ) 3 M M n 0 a 2 ( n 2 / 3 / 1 M a * example 6 M a * HDM: top-down CDM: bottom-up / 1 2 / 1 2 2 2 1 1 free streaming 0 0 M M
ΛCDM Power Spectrum 2k ( ) ( ) P k k T ln( 1 . 2 34 q ) q k 1 / 1 4 2 3 4 ( ) . 3 89 16 ( 1 . ) . 5 ( 46 ) . 6 ( 71 ) T k q q q q q 2 1 . 2 34 h Mpc m normalization: 1 ( 8 ) R h Mpc 8 tophat
Lecture Non-linear Growth of Structure Spherical Collapse, Virial Theorem, Zel’dovich Approximation, N-body Simulations
ימסוקה גראמהמ תומדקומה תויסקלגה תורצוויה
Filamentary Structure: Zel’dovich Approximation Approximate the displacement from initial position ( , ) ( ) ( ), x q t q D t q Velocity & acceleration along displacement → trajectories straight lines D D as in linear , x x x central force → potential flow , r ax v r a x a x Hr v In physical coordinates pec Density (Lagrangian): 3 3 continuity ( , ) x t d x d q q 2 q q q ( , ) x t , 1 2 3 i 2 || / || 1 ( ( ) )( 1 ( ) )( 1 ( ) ) x q D t D t D t i 1 2 3 deformation tensor eigenvalues Jacobian → caustics 1 2 3 cluster 8% 1 2 3 pancake 42% 1 2 3
Zel’dovich Approximation cont’d 2 q q ( , ) x t , 1 2 3 i 2 1 ( ( ) )( 1 ( ) )( 1 ( ) ) D t D t D t i 1 2 3 2 3 1 ( ) ( ...) ( ) ... D D D 1 2 3 1 2 1 2 3 q 1 x D linear ( ) D D D v v 1 2 3 D D ( ) Hf D D → D is the growing mode of GI obeying 4 2 H G D Error: plug density in Poisson eq. 2 ( ) 1 2 3 Poisson grav linear → error is 2nd +3rd terms 2 3 3 2 3 2 3 ( ) ( 2 ) 2 D D 1 1 2 2 1 1 1 1 error small in linear regime 1 D 1 or pancakes , 1 2 3 error big in spherical collapse ~ ~ 1 2 3
Non-dissipative Pancakes: why flat? h v R oscilation time << expansion time 1 H adiabatic invariant 2 2 . ~ ~ ~ const x dt v h v 0 2 3 / 1 / 2 3 ~ v f fv v f R 2 f R 1 / 2 3 h v R h / 1 3 / 1 3 R a R pancake becomes flatter in time
N-body simulation CDM N-body simulation
N-body simulation spherical collapse or mergers
N-body simulation spherical collapse or mergers
N-body simulation spherical collapse or mergers
Top-Hat Model (Λ=0, matter era) * 2 a a bound sphere (k=1) in EdS universe (k=0) 2 * 3 4 ( ) 3 / . a k a G a const a conformal time cos * 2 * 3 ( a ) 2 / 1 ( ( ) 6 / ( p a a a t ) a dt t d * * (t ) a sin ) a p p p p p 3 / 2 * * 6 a 6 a 1 p p 3 ( ) ( sin ) a ( ) ( sin ) t t p p p p p p p * * 2 a a universe overdensity: 3 * 2 ( 9 sin ) a a p p p p * 3 * 3 a a a a 5.55 * 3 1 ( 2 cos ) a a p p p p p / 1 1 linear perturbation Taylor perturbation p 1 1 1 1 2 4 3 5 cos 1 sin 2 24 6 120 a 2 p 3 / 2 t . 0 15 a p 2 0 p p 2 9 0 tmax tvir . 5 55 turnaround p 16 3 / 2 / 2 3 ( ) 1 ( 2 ) t 3 2 2 p linear equivalent to collapse ( ) 1 . 0 15 . 1 68 2 p p c t / 6 p p
universe 4 5.55 200 8 perturbation 2 0 t 0 tmax tvir
Spherical Collapse universe max 5 . 5 vir radius 200 perturbation virial equilibrium time 1 GM GM virial equilibrium: E 2 R max R vir
Virial Scaling Relations GM Virial equilibrium: 2 V R M Spherical collapse: 3 a 200 0 u u 3 4 ( ) 3 / R 3 / 3 2 3 3 M V a R a Weak dependence on time of formation: ( ) ( ) 1 ( / ) 3 6 1 . 0 2 . 0 D a M a M n 0 4 for 2 M V n Practical formulae: 30 3 2 3 . 2 76 10 g cm 7 . 0 h a 3 . 0 m u 3 / 3 2 3 Mpc 3 M V A R A 11 100 2 / 1 3 ( ) A a 7 . 0 h 200 3 . 0 m 2 2 ( ) 18 [ 82 ( ) 39 ( ) / ] ( ) ( ) 1 178 340 a a a a a 0 m 3 a ( ) ( ) ( ) 1 m a a a m m 3 a m
Lecture 6 Hierarchical Clustering Press Schechter Formalism
Press Schechter Formalism halo mass function n(M,a) Gaussian random field random spheres of mass M linear-extrapolated δrmsat a: 2 / 1 2 2 2 ( ) 2 ( ) exp( / 2 ) P nonlinear σ ( , ) ( ) ( ) M a M D a 0 linear fraction of spheres with δ>δc =1.68: a(t) a0=1 2 / 1 2 2 2 ( , ) 2 [ ( , )] exp[ / 2 ( , )] F M a d M a M a c δ δc / 1 2 2 2 ( ) exp( ) 2 / dx x c / ( , ) M a c x c ( ) ( ) D a 0M PS ansaz: F is the mass fraction in halos >M (at a) derivative of F with respect to M: / 1 2 ln 2 d dM 2 0 ( , ) exp( ) 2 / n M a dM c c ln M d M M Mo & White 2002
Press Schechter Formalism cont. / 1 2 ln 2 d dM 2 0 ( , ) exp( ) 2 / n M a dM c c ln M d M M ~ M 2 log n(M) Example: n ( ) ( / ) P k M M M ) 2 / M M 0 * k c ln d 3 ( / ) n 6 0 ln d ~2 M / 2 e ~ ~ ~ M*(a) 2 2 ( ) exp( / n M M M M M M * self-similar evolution, scaled with M* log M approximate c ( ) defined by ( , ) M a M a c ( ) ( ) D a 0M * * c / 1 ) 13 5 ( ) ( ~ 10 M a M D a M a time Pk * * 0 ~ 2 1 2 2 ( ) 2 ( ) ( ) ( ) R dk k P k W kR 0 in a flat universe Top Hat ( ) ( / ) a ) 1 ( g D a a g ~ 3) ( ) ( / ) ( ) [sin( 3 ) cos( )] /( W x x R W k kR kR kR kR 1 1 ( 2 / ) a 5 R R 7 / 4 ) ( ) ( ) ( ( ) m g a a a a m m 2 1 ( / ) a 70 kR=π 3 a ( ) m a m 3 a m x k R
Press Schechter cont. Better fit using ellipsoidal collapse (Sheth & Tormen 2002) 4 . 0 1/2 ( , ) 1 ( 4 . 0 4 . 0 / ) erfc(0.85 /2 ) F M a 1 2 , 3 , 22 %, 7 . 4 %, . 0 54 % Comparison of PS to N-body simulations log M2n(M) factor 2 log M
Press-Schechter in ΛCDM 14 log 13 13 . 3 . 1 ( ) 2 M z z * 13 2σ log M/Mʘ 12 1σ 11 10 9 Mo & White 2002
Press-Schechter Mo & White 2002
Mass versus Light Distribution halo mass galaxy stellar mass 40% of baryons