1 / 37

2dF Galaxy Redshift Survey ¼ M galaxies 2003

2dF Galaxy Redshift Survey ¼ M galaxies 2003. CFA Survey 1980. The Initial Fluctuations At Inflation: Gaussian, adiabatic a realization of an ensemble ensembe average ~ volume average. . . (. ). x.  . . . fluctuation field. . (. ). x. . . . . . . .

mcnelly
Download Presentation

2dF Galaxy Redshift Survey ¼ M galaxies 2003

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 2dF Galaxy Redshift Survey ¼ M galaxies 2003 CFA Survey 1980

  2. The Initial Fluctuations At Inflation: Gaussian, adiabatic a realization of an ensemble ensembe average ~ volume average   ( ) x     fluctuation field  ( ) x        k i x     ~   ( ) Fourier x ke  Power Spectrum 2| ) n ( ) | ( P k k k      k   ~ 2 / K K K rms      2 3 3 3 ~ exp[ ( ) ' ] ' ~ i k k  x d k d k d k   k 0   0          ' k k k k  ' 0 k k   ( ) ' k k  Dirac   2 /  2 3 ( 3 / ) 3  n     2| P d k M |           k k k k  0 k δ Pk  3 / 2  1 n M    / 1  2 0  n M    3 . n const   M k

  3. Scale-Invariant Spectrum (Harrison-Zel’dovich) R  t mass  MH t Horizon 3 2   a t  H t m M time t 2 / 3 t   2 / 3 2 / 3     ( , ) M t M t        H ( ) t M H  . const H  1 n P k  k 2 / 3   M M

  4. Cosmological Scales mass ~ R  ct MH t Horizon 3 2   a t  m  3  a matter  4  a rad t0 teq time zeq~104

  5. CDM Power Spectrum MH t  mass H  growth when matter is self- gravitating  H  H   rad mass t time teq CDM 1  k Pk  2 / 3  3 M  k CDM HDM HDM free streeming mass k kpeak m h Meq

  6. Formation of Large-Scale Structure Fluctuation growth in the linear regime: rms fluctuation at mass scale M: Typical objects forming at t:   ~ 1    / 2 t 6 3 1 a  / ) 3   M M   n  0  a 2    ( n    2 / 3     / 1   M a * example 6 M a   * HDM: top-down CDM: bottom-up / 1 2 / 1 2 2 2                     1 1 free streaming 0 0 M M

  7. Power Spectrum

  8. ΛCDM Power Spectrum 2k ( ) ( ) P k k T  ln( 1 . 2 34 q ) q k   1  / 1  4 2 3 4 ( ) . 3 89 16 ( 1 . ) . 5 (  46 ) . 6 (  71 ) T k q q q q q     2 1 . 2 34  h Mpc  m normalization:    1 ( 8 )  R h Mpc  8 tophat

  9. Lecture Non-linear Growth of Structure Spherical Collapse, Virial Theorem, Zel’dovich Approximation, N-body Simulations

  10. Formation of Large-Scale Structure: comoving

  11. ימסוקה גראמהמ תומדקומה תויסקלגה תורצוויה

  12. Filamentary Structure: Zel’dovich Approximation Approximate the displacement from initial position    ( , ) ( ) ( ), x q t q D t q     Velocity & acceleration along displacement → trajectories straight lines D  D   as in linear  ,  x  x   x     central force → potential flow , r ax v r  a  x a x  Hr v       In physical coordinates pec Density (Lagrangian):   3 3 continuity ( , ) x t d x d q  q   2  q  q  q      ( , ) x t ,         1 2 3 i    2 || / || 1 ( ( ) )( 1 ( ) )( 1 ( ) ) x q D t D t D t      i 1 2 3 deformation tensor eigenvalues Jacobian → caustics      1 2 3    cluster 8%   1 2 3    pancake 42%   1 2 3

  13. Zel’dovich Approximation cont’d  2  q  q      ( , ) x t ,     1 2 3 i    2 1 ( ( ) )( 1 ( ) )( 1 ( ) ) D t D t D t     i 1 2 3           2 3 1 ( ) ( ...) ( ) ... D D D           1 2 3 1 2 1 2 3  q 1 x  D linear       ( ) D D D v v                    1 2 3 D  D  ( ) Hf  D   D  → D is the growing mode of GI obeying  4  2 H G D   Error: plug density in Poisson eq.        2 ( )          1 2 3 Poisson grav linear           → error is 2nd +3rd terms   2 3 3 2 3 2 3 ( ) ( 2 ) 2   D D          1 1 2 2      1 1 1 1 error small in linear regime  1 D  1    or pancakes ,  1 2 3 error big in spherical collapse    ~ ~ 1 2 3

  14. Non-dissipative Pancakes: why flat?  h v R oscilation time << expansion time  1   H  adiabatic invariant  2 2 . ~ ~ ~ const x dt v h v 0  2 3 / 1 / 2  3 ~  v f fv v f R     2  f R    1 / 2 3  h v R   h / 1  3 / 1  3 R a   R pancake becomes flatter in time

  15. N-body simulation CDM N-body simulation

  16. N-body simulation

  17. N-body simulation

  18. N-body simulation spherical collapse or mergers

  19. N-body simulation spherical collapse or mergers

  20. N-body simulation spherical collapse or mergers

  21. xxx

  22. N-body simulation of Halo Formation

  23. N-body simulation of Halo Formation

  24. Top-Hat Model (Λ=0, matter era) * 2 a a bound sphere (k=1) in EdS universe (k=0)   2 * 3 4 ( ) 3 / . a  k a G a const     a conformal time  cos  * 2 * 3 ( a ) 2 / 1 ( (  ) 6 / ( p a a a t ) a dt   t d   * * (t ) a    sin ) a    p p p p p 3 / 2   * *   6 a 6 a 1  p p        3 ( ) ( sin ) a ( ) ( sin ) t t       p p p p p p p    * * 2 a a universe overdensity: 3 *    2 ( 9 sin ) a    a p p p p   * 3     * 3 a a a a       5.55   * 3 1 ( 2 cos ) a a p p p  p p    / 1 1   linear perturbation Taylor perturbation p 1 1 1 1        2 4 3 5 cos 1 sin        2 24 6 120      a  2 p  3 / 2 t . 0 15 a      p   2  0 p p  2 9 0 tmax tvir   . 5 55   turnaround p  16 3 / 2 / 2 3  (  ) 1   ( 2 ) t  3    2 2   p linear equivalent to collapse        ( ) 1 . 0 15  . 1 68      2 p p c           t / 6  p p

  25. universe 4 5.55 200 8 perturbation   2 0 t 0 tmax tvir

  26. Spherical Collapse  universe max  5 . 5 vir radius 200  perturbation  virial equilibrium time 1 GM GM virial equilibrium: E     2 R max R vir

  27. Virial Scaling Relations GM Virial equilibrium: 2 V  R M Spherical collapse:   3  a 200       0 u u  3 4 ( ) 3 / R 3 / 3 2 3 3  M V a R a    Weak dependence on time of formation:    ( ) ( ) 1 ( / ) 3  6 1 . 0  2 . 0  D a M a M n     0 4 for 2 M V n    Practical formulae:  30 3 2 3 . 2 76 10    g cm 7 . 0 h a    3 . 0 m u 3 / 3  2 3 Mpc 3  M V A R A   11 100 2 / 1  3 ( ) A a 7 . 0 h    200 3 . 0 m  2 2 ( ) 18 [ 82 ( ) 39 ( ) / ] ( ) ( ) 1 178  340  a a a a a           0 m   3  a  ( ) ( ) ( ) 1 m a a a       m m  3  a    m 

  28. Lecture 6 Hierarchical Clustering Press Schechter Formalism

  29. Press Schechter Formalism halo mass function n(M,a) Gaussian random field random spheres of mass M linear-extrapolated δrmsat a:     2 / 1  2 2 2 ( ) 2 ( ) exp( / 2 ) P   nonlinear σ   ( , ) ( ) ( ) M a M D a  0 linear fraction of spheres with δ>δc =1.68: a(t) a0=1      2 / 1  2 2 2 ( , ) 2 [ ( , )] exp[ / 2 ( , )] F M a d M a M a  c  δ   δc   / 1  2 2 2 ( ) exp( ) 2 / dx x  c     / ( , ) M a    c x c  ( ) ( ) D a 0M PS ansaz: F is the mass fraction in halos >M (at a) derivative of F with respect to M: / 1   2   ln 2  d dM   2   0 ( , ) exp( ) 2 / n M a dM     c c ln M d M M Mo & White 2002

  30. Press Schechter Formalism cont. / 1   2   ln 2  d dM   2   0 ( , ) exp( ) 2 / n M a dM     c c ln M d M M ~ M 2 log n(M) Example:     n ( ) ( / )  P k M M  M ) 2 / M M      0 * k c ln d  3 ( / ) n 6    0  ln d ~2 M / 2 e ~ ~ ~ M*(a)    2 2 ( )  exp( / n M M M M M M    * self-similar evolution, scaled with M* log M  approximate     c ( ) defined by ( , ) M a M a  c  ( ) ( ) D a 0M * * c  / 1 ) 13 5 ( ) ( ~ 10 M a M D a M a  time Pk * * 0  ~    2  1 2 2 ( ) 2 ( ) ( ) ( ) R dk k P k W kR  0  in a flat universe Top Hat ( ) ( / ) a ) 1 ( g D a a g  ~ 3) ( ) ( / ) ( ) [sin( 3  ) cos( )] /( W x x R W k kR kR kR kR    1  1 ( 2 / ) a 5 R R     7 / 4 ) ( ) ( ) ( ( ) m g a a a a             m m  2 1 ( / ) a 70    kR=π 3  a  ( ) m a   m 3  a    m  x k R

  31. Press Schechter cont. Better fit using ellipsoidal collapse (Sheth & Tormen 2002)   4 . 0 1/2 ( , ) 1 ( 4 . 0  4 . 0  / ) erfc(0.85 /2 ) F M a     1 2 , 3 , 22 %, 7 . 4 %, . 0 54 % Comparison of PS to N-body simulations log M2n(M) factor 2 log M

  32. Press-Schechter in ΛCDM 14 log 13 13 . 3 . 1  ( ) 2 M z z   * 13 2σ log M/Mʘ 12 1σ 11 10 9 Mo & White 2002

  33. Press-Schechter Mo & White 2002

  34. Merger Tree t

  35. Mass versus Light Distribution halo mass galaxy stellar mass 40% of baryons

More Related