510 likes | 686 Views
Stacks and Queues. More complete list ADT. struct Node{ double data; Node* next; }; class List { public: List(); // constructor List(const List& list); // copy constructor ~List(); // destructor
E N D
More complete list ADT struct Node{ double data; Node* next; }; class List { public: List(); // constructor List(const List& list); // copy constructor ~List(); // destructor List& operator=(const List& list); // assignment operator bool empty() const; // boolean function void addHead(double x); // add to the head double deleteHead(); // delete the head and get the head element // List& rest(); // get the rest of the list with the head removed // double headElement() const; // get the head element void addEnd(double x); // add to the end double deleteEnd(); // delete the end and get the end element // double endElement(); // get the element at the end bool searchNode(double x); // search for a given x void insertNode(double x); // insert x in a sorted list void deleteNode(double x); // delete x in a sorted list … void print() const; // output int length() const; // count the number of elements private: Node* head; };
Stack Overview • Stack ADT • Basic operations of stack • Pushing, popping etc. • Implementations of stacks using • array • linked list
Stack • A stack is a list in which insertion and deletion take place at the same end • This end is called top • The other end is called bottom • Stacks are known as LIFO (Last In, First Out) lists. • The last element inserted will be the first to be retrieved
empty stack push an element push another pop A A B A top top top top Push and Pop • Primary operations: Push and Pop • Push • Add an element to the top of the stack • Pop • Remove the element at the top of the stack
Implementation of Stacks • Any list implementation could be used to implement a stack • Arrays (static: the size of stack is given initially) • Linked lists (dynamic: never become full) • We will explore implementations based on array and linked list
Stack ADT class Stack { public: Stack(); // constructor Stack(const Stack& stack); // copy constructor ~Stack(); // destructor bool empty() const; void push(const double x); double pop(); // change the stack double top() const; // keep the stack unchanged // bool full(); // optional // void print() const; private: … }; ‘physical’ constructor/destructor update, ‘logical’ constructor/destructor, composition/decomposition inspection, access Compare with List, see that it’s ‘operations’ that define the type!
Using Stack int main(void) { Stack stack; stack.push(5.0); stack.push(6.5); stack.push(-3.0); stack.push(-8.0); stack.print(); cout << "Top: " << stack.top() << endl; stack.pop(); cout << "Top: " << stack.top() << endl; while (!stack.empty()) stack.pop(); stack.print(); return 0; } result
Stack using linked lists struct Node{ public: double data; Node* next; }; class Stack { public: Stack(); // constructor Stack(const Stack& stack); // copy constructor ~Stack(); // destructor bool empty() const; void push(const double x); double pop(); // change the stack bool full(); // unnecessary for linked lists double top() const; // keep the stack unchanged void print() const; private: Node* top; };
Push (addHead), Pop (deleteHead) void List::addHead(int newdata){ Nodeptr newPtr = new Node; newPtr->data = newdata; newPtr->next = head; head = newPtr; } From ‘addHead’ to ‘push’ void Stack::push(double x){ Node* newPtr = new Node; newPtr->data = x; newPtr->next = top; top = newPtr; }
Implementation based on ‘existing’ linked lists • Optional to learn • Good to see that we may ‘re-use’ linked lists
Now let’s implement a stack based on a linked list • To make the best out of the code of List, we implement Stack by inheriting List • To let Stack access private member head, we make Stack as a friend of List class List { public: List() { head = NULL; } // constructor ~List(); // destructor bool empty() { return head == NULL; } Node* insertNode(int index, double x); int deleteNode(double x); int searchNode(double x); void printList(void); private: Node* head; friendclass Stack; };
from List class Stack : public List { public: Stack() {} ~Stack() {} double top() { if (head == NULL) { cout << "Error: the stack is empty." << endl; return -1; } else return head->data; } void push(const double x) { InsertNode(0, x); } double pop() { if (head == NULL) { cout << "Error: the stack is empty." << endl; return -1; } else { double val = head->data; DeleteNode(val); return val; } } void printStack() { printList(); } }; Note: the stack implementation based on a linked list will never be full.
Stack using arrays class Stack { public: Stack(int size = 10); // constructor ~Stack() { delete [] values; } // destructor bool empty() { return top == -1; } void push(const double x); double pop(); bool full() { return top == maxTop; } double top(); void print(); private: int maxTop; // max stack size = size - 1 int top; // current top of stack double* values; // element array };
Attributes of Stack • maxTop: the max size of stack • top: the index of the top element of stack • values: point to an array which stores elements of stack • Operations of Stack • empty: return true if stack is empty, return false otherwise • full: return true if stack is full, return false otherwise • top: return the element at the top of stack • push: add an element to the top of stack • pop: delete the element at the top of stack • print: print all the data in the stack
Stack constructor • Allocate a stack array of size. By default, size = 10. • Initially top is set to -1. It means the stack is empty. • When the stack is full, top will have its maximum value, i.e. size – 1. Stack::Stack(int size /*= 10*/) { values = new double[size]; top = -1; maxTop = size - 1; } Although the constructor dynamically allocates the stack array, the stack is still static. The size is fixed after the initialization.
void push(const double x); • Push an element onto the stack • Note top always represents the index of the top element. After pushing an element, increment top. void Stack::push(const double x) { if (full()) // if stack is full, print error cout << "Error: the stack is full." << endl; else values[++top] = x; }
double pop() • Pop and return the element at the top of the stack • Don’t forgot to decrement top double Stack::pop() { if (empty()) { //if stack is empty, print error cout << "Error: the stack is empty." << endl; return -1; } else { return values[top--]; } }
double top() • Return the top element of the stack • Unlike pop, this function does not remove the top element double Stack::top() { if (empty()) { cout << "Error: the stack is empty." << endl; return -1; } else return values[top]; }
void print() • Print all the elements void Stack::print() { cout << "top -->"; for (int i = top; i >= 0; i--) cout << "\t|\t" << values[i] << "\t|" << endl; cout << "\t|---------------|" << endl; }
Stack Application: Balancing Symbols • To check that every right brace, bracket, and parentheses must correspond to its left counterpart • e.g. [( )] is legal, but [( ] ) is illegal • Algorithm (1) Make an empty stack. (2) Read characters until end of file i. If the character is an opening symbol, push it onto the stack ii. If it is a closing symbol, then if the stack is empty, report an error iii. Otherwise, pop the stack. If the symbol popped is not the corresponding opening symbol, then report an error (3) At end of file, if the stack is not empty, report an error
Stack Application: function calls and recursion • Take the example of factorial! And run it. #include <iostream> using namespace std; int fac(int n){ int product; if(n <= 1) product = 1; else product = n * fac(n-1); return product; } void main(){ int number; cout << "Enter a positive integer : " << endl;; cin >> number; cout << fac(number) << endl; }
Tracing the program … Assume the number typed is 3. fac(3): has the final returned value 6 3<=1 ? No. product3 = 3*fac(2) product3=3*2=6, return 6, fac(2): 2<=1 ? No. product2 = 2*fac(1) product2=2*1=2, return 2, fac(1): 1<=1 ? Yes. return 1
Call is to ‘push’ and return is to ‘pop’! top fac(1) prod1=1 fac(2) prod2=2*fac(1) fac(3) prod3=3*fac(2)
Array versus linked list implementations • push, pop, top are all constant-time operations in both array and linked list implementation • For array implementation, the operations are performed in very fast constant time
Queue Overview • Queue ADT • Basic operations of queue • Enqueuing, dequeuing etc. • Implementation of queue • Linked list • Array
Queue • A queue is also a list. However, insertion is done at one end, while deletion is performed at the other end. • It is “First In, First Out (FIFO)” order. • Like customers standing in a check-out line in a store, the first customer in is the first customer served.
Enqueue and Dequeue • Primary queue operations: Enqueue and Dequeue • Like check-out lines in a store, a queue has a front and a rear. • Enqueue – insert an element at the rear of the queue • Dequeue – remove an element from the front of the queue Insert (Enqueue) Remove(Dequeue) front rear
Implementation of Queue • Just as stacks can be implemented as arrays or linked lists, so with queues. • Dynamic queues have the same advantages over static queues as dynamic stacks have over static stacks
Queue ADT class Queue { public: Queue(); Queue(Queue& queue); ~Queue(); bool empty(); void enqueue(double x); double dequeue(); void print(void); // bool full(); // optional private: … }; ‘physical’ constructor/destructor ‘logical’ constructor/destructor
Using Queue int main(void) { Queue queue; cout << "Enqueue 5 items." << endl; for (int x = 0; x < 5; x++) queue.enqueue(x); cout << "Now attempting to enqueue again..." << endl; queue.enqueue(5); queue.print(); double value; value=queue.dequeue(); cout << "Retrieved element = " << value << endl; queue.print(); queue.enqueue(7); queue.print(); return 0; }
Queue using linked lists Struct Node { double data; Node* next; } class Queue { public: Queue(); Queue(Queue& queue); ~Queue(); bool empty(); void enqueue(double x); double dequeue(); // bool full(); // optional void print(void); private: Node* front; // pointer to front node Node* rear; // pointer to last node int counter; // number of elements };
Implementation of some online member functions … class Queue { public: Queue() { // constructor front = rear = NULL; counter = 0; } ~Queue() { // destructor double value; while (!empty()) dequeue(value); } bool empty() { if (counter) return false; else return true; } void enqueue(double x); double dequeue(); // bool full() {return false;}; void print(void); private: Node* front; // pointer to front node Node* rear; // pointer to last node int counter; // number of elements, not compulsary };
Enqueue (addEnd) void Queue::enqueue(double x) { Node* newNode = new Node; newNode->data = x; newNode->next = NULL; if (empty()) { front = newNode; } else { rear->next = newNode; } rear = newNode; counter++; } rear 5 8 rear 8 5 newNode
front 5 8 Dequeue (deleteHead) double Queue::dequeue() { double x; if (empty()) { cout << "Error: the queue is empty." << endl; exit(1); // return false; } else { x = front->data; Node* nextNode = front->next; delete front; front = nextNode; counter--; } return x; } front 3 8 5
Printing all the elements void Queue::print() { cout << "front -->"; Node* currNode = front; for (int i = 0; i < counter; i++) { if (i == 0) cout << "\t"; else cout << "\t\t"; cout << currNode->data; if (i != counter - 1) cout << endl; else cout << "\t<-- rear" << endl; currNode = currNode->next; } }
rear rear rear front front front 3 3 3 6 9 6 Enqueue(3) Enqueue(9) Enqueue(6) Queue using Arrays • There are several different algorithms to implement Enqueue and Dequeue • Naïve way • When enqueuing, the front index is always fixed and the rear index moves forward in the array.
rear rear front front front • Naïve way (cont’d) • When dequeuing, the front index is fixed, and the element at the front the queue is removed. Move all the elements after it by one position. (Inefficient!!!) rear = -1 6 9 9 Dequeue() Dequeue() Dequeue()
A better way • When enqueued, the rear index moves forward. • When dequeued, the front index also moves forward by one element (front) XXXXOOOOO (rear) OXXXXOOOO (after 1 dequeue, and 1 enqueue) OOXXXXXOO (after another dequeue, and 2 enqueues) OOOOXXXXX (after 2 more dequeues, and 2 enqueues) The problem here is that the rear index cannot move beyond the last element in the array.
Using Circular Arrays • Using a circular array • When an element moves past the end of a circular array, it wraps around to the beginning, e.g. • OOOOO7963 4OOOO7963 (after Enqueue(4)) • How to detect an empty or full queue, using a circular array algorithm? • Use a counter of the number of elements in the queue.
class Queue { public: Queue(int size = 10); // constructor Queue(Queue& queue); // not necessary! ~Queue() { delete [] values; } // destructor bool empty(void); void enqueue(double x); // or bool enqueue(); double dequeue(); bool full(); void print(void); private: int front; // front index int rear; // rear index int counter; // number of elements int maxSize; // size of array queue double* values; // element array }; full() is not essential, can be embedded
Attributes of Queue • front/rear: front/rear index • counter: number of elements in the queue • maxSize: capacity of the queue • values: point to an array which stores elements of the queue • Operations of Queue • empty: return true if queue is empty, return false otherwise • full: return true if queue is full, return false otherwise • enqueue: add an element to the rear of queue • dequeue: delete the element at the front of queue • print: print all the data
Queue constructor • Queue(int size = 10) • Allocate a queue array of size. By default, size = 10. • front is set to 0, pointing to the first element of the array • rear is set to -1. The queue is empty initially. Queue::Queue(int size /* = 10 */) { values = newdouble[size]; maxSize = size; front = 0; rear = -1; counter = 0; }
Empty & Full • Since we keep track of the number of elements that are actually in the queue: counter, it is easy to check if the queue is empty or full. bool Queue::empty() { if (counter==0) return true; else return false; } bool Queue::full() { if (counter < maxSize) return false; else return true; }
Enqueue Or ‘bool’ if you want void Queue::enqueue(double x) { if (full()) { cout << "Error: the queue is full." << endl; exit(1); // return false; } else { // calculate the new rear position (circular) rear = (rear + 1) % maxSize; // insert new item values[rear] = x; // update counter counter++; // return true; } }
Dequeue double Queue::dequeue() { double x; if (empty()) { cout << "Error: the queue is empty." << endl; exit(1); // return false; } else { // retrieve the front item x = values[front]; // move front front = (front + 1) % maxSize; // update counter counter--; // return true; } return x; }
Printing the elements void Queue::print() { cout << "front -->"; for (int i = 0; i < counter; i++) { if (i == 0) cout << "\t"; else cout << "\t\t"; cout << values[(front + i) % maxSize]; if (i != counter - 1) cout << endl; else cout << "\t<-- rear" << endl; } }
Using Queue int main(void) { Queue queue; cout << "Enqueue 5 items." << endl; for (int x = 0; x < 5; x++) queue.enqueue(x); cout << "Now attempting to enqueue again..." << endl; queue.enqueue(5); queue.print(); double value; value=queue.dequeue(); cout << "Retrieved element = " << value << endl; queue.print(); queue.enqueue(7); queue.print(); return 0; }
Results Queue implemented using linked list will be never full! based on array based on linked list
Queue applications • When jobs are sent to a printer, in order of arrival, a queue. • Customers at ticket counters …