1 / 20

Protein Digestion: A Dynamic Model

Protein Digestion: A Dynamic Model. Student Name 1 & Student Name 2 Process Control: Design Challenge I. Our System. F 1 , X ai. F 2 , X bi. V. The Stomach. F 3 , X a , X b , X c. ODEs. Reaction:. Assumptions: Well mixed Constant: V, X bi , density, flow rates.

meda
Download Presentation

Protein Digestion: A Dynamic Model

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Protein Digestion: A Dynamic Model Student Name 1 & Student Name 2 Process Control: Design Challenge I

  2. Our System F1, Xai F2, Xbi V The Stomach F3, Xa, Xb, Xc ODEs Reaction: • Assumptions: • Well mixed • Constant: V, Xbi, density, flow rates

  3. Steady State Solution Original Conditions INPUT: Clear [xa,xb,xc]; eqns = {F1*Xai-V*k*xa*xb-F3*xa == 0, F2*Xbi-V*k*xa*xb-F3*xb == 0, V*k*xb*xa-F3*xc == 0, F1 == 15, F2 == 7, F3 == F1+F2, k == 5, Xai == 150, Xbi == 1000, V == 1000}; NSolve[eqns, {xa,xb,xc}] OUTPUT: {{xc®102.271,xa®0.00208415,xb®215.911},{xc®318.188,xa®-215.916,xb®-0.00648415}} Exit concentrations: Protein: 0.0021 mg/ml Enzyme: 216.0 mg/ml Tryptophan: 102.3 mg/ml Decrease Initial Enzyme Concentration INPUT: Clear [xa,xb,xc]; eqns = {F1*Xai-V*k*xa*xb-F3*xa == 0, F2*Xbi-V*k*xa*xb-F3*xb == 0, V*k*xb*xa-F3*xc == 0,F1 == 15, F2 == 7, F3 == F1+F2, k == 5, Xai == 150, Xbi == 500, V == 1000}; NSolve[eqns, {xa,xb,xc}] OUTPUTl: {{xc®102.265,xa®0.00791828,xb®56.8261},{xc®159.103,xa®-56.8305,xb®-0.0123183}} Exit concentrations: Protein: 0.008 mg/ml Enzyme: 56.8 mg/ml Tryptophan: 102.3 mg/ml Given Values

  4. Steady State Solution Original Conditions INPUT: Clear [xa,xb,xc]; eqns = {F1*Xai-V*k*xa*xb-F3*xa == 0, F2*Xbi-V*k*xa*xb-F3*xb == 0, V*k*xb*xa-F3*xc == 0,F1 == 15, F2 == 7, F3 == F1+F2, k == 5, Xai == 150, Xbi == 1000, V == 1000}; NSolve[eqns, {xa,xb,xc}] OUTPUT: {{xc®102.271,xa®0.00208415,xb®215.911},{xc®318.188,xa®-215.916,xb®-0.00648415}} Exit concentrations: Protein: 0.0021 mg/ml Enzyme: 216.0 mg/ml Tryptophan: 102.3 mg/ml Increase Inlet Flow Rate INPUT Clear [xa,xb,xc]; eqns = {F1*Xai-V*k*xa*xb-F3*xa == 0, F2*Xbi-V*k*xa*xb-F3*xb == 0, V*k*xb*xa-F3*xc == 0, F1 == 30, F2 == 7, F3 == F1+F2, k == 5, Xai == 150, Xbi == 1000, V == 1000}; NSolve[eqns, {xa,xb,xc}] OUTPUT {{xc®121.608,xa®0.0133159,xb®67.5809},{xc®189.21,xa®-67.5883,xb®-0.0207159}} Exit concentrations: Protein: 0.013 mg/ml Enzyme: 67.6 mg/ml Tryptophan: 121.6 mg/ml

  5. Mathematical Solution Laplace Procedure • Linearize ODE • Subtract original steady state • Find τ’s and k’s • Laplace • Rearrange to find transfer functions • Substitute to get one equation • Inverse Laplace with Maple® ODEs

  6. Mathematical Solution Laplace Transform: Where

  7. Mathematical Solution Cont. Fuzzy Math Inverse Laplace via Maple® Impulse Response Step Response

  8. Step Response Matlab® Input function hdot=stomachstep(t,h) hdot=zeros(3,1); F1=15; F2=7; F3=22; V=1000; k=5; Xbi=1000; if t<100 Xai=100; else Xai=150; end; hdot(1)=(F1*Xai-V*k*h(1)*h(2)-F3*h(1))/V; hdot(2)=(F2*Xbi-V*k*h(1)*h(2)-F3*h(2))/V; hdot(3)=(k*V*h(1)*h(2)-F3*h(3))/V; t0=0; tf=400; h0=[0.021 216 102.3]; [t,h]=ode23(@stomachstep,[t0 tf],h0); plot(t,h(:,2),t,h(:,3))

  9. Step Response Matlab® Output

  10. Step Response Simulink® Diagram

  11. Step Response Simulink® Output for Enzyme

  12. Step Response Simulink® Output for Tryptophan

  13. Impulse Response Matlab® Input function hdot=stomachimpulse(t,h) hdot=zeros(3,1); F1=15; F2=7; F3=22; V=1000; k=5; Xbi=1000; if t<100 Xai=200; elseif t>105 Xai=200; else Xai=500; end; hdot(1)=(F1*Xai-V*k*h(1)*h(2)-F3*h(1))/V; hdot(2)=(F2*Xbi-V*k*h(1)*h(2)-F3*h(2))/V; hdot(3)=(k*V*h(1)*h(2)-F3*h(3))/V; t0=0; tf=400; h0=[0.0021 216 102.3]; [t,h]=ode23(@stomachimpulse,[t0 tf],h0); plot(t,h(:,2),t,h(:,3))

  14. Impulse Response Matlab® Output

  15. Impulse Response Simulink® Diagram

  16. Impulse Response Simulink® Output for Enzyme

  17. Impulse Response Simulink® Output forTryptophan

  18. Final Thoughts Conclusions • Linear approximation is valid • Step response is as expected • Impulse response as expected • Matlab® & Simulink® agree • Model will provide basis for more complex systems Recommendations • Vary k values • Explore larger/smaller step and impulse values • Make model more realistic • Model multiple food components

  19. References • Biglione, N., Yousef, M., & Rodgers, V.G.J., (2004). Process Dynamics & Control in Design 52:185: Lab # 1: Programming and Simulation using Matlab® and Simulink®. • Seborg, D.E., Edgar, T.F., & Millichamp, D.A. (2004). Process Dynamics and Control (2nd ed.). Hoboken, NJ: John Wiley & Sons. • Vander, A., Sherman, J., Luciano, D. (2001). Human Physiology: The Mechanisms of Body Function (8th ed.). Boston: McGraw Hill.

  20. Questions?

More Related