1 / 90

Hierarchical Graph Cuts for Semi-Metric Labeling

Hierarchical Graph Cuts for Semi-Metric Labeling. M. Pawan Kumar Joint work with Daphne Koller. Aim. To obtain accurate MAP estimate for Semi-Metric MRFs efficiently. V 1. V 2. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. …. V n.

media
Download Presentation

Hierarchical Graph Cuts for Semi-Metric Labeling

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Hierarchical Graph Cutsfor Semi-Metric Labeling M. Pawan Kumar Joint work with Daphne Koller

  2. Aim To obtain accurate MAP estimate for Semi-Metric MRFs efficiently V1 V2 … … … … … … … … … … … … … … … … … Vn Random Variables V = { V1, V2, …, Vn}

  3. Aim To obtain accurate MAP estimate for Semi-Metric MRFs efficiently lj ab(i,j) a(i) : arbitrary li ab(i,j) = sab d(i,j) sab ≥ 0 b(j) a(i) Vb Va d( i , i ) = 0 for all i d( i , j ) = d( j , i ) > 0 for all i≠j Semi-metric Distance Function d( i , j ) - d( j , k ) ≤ d( i , k ) Metric Distance Function

  4. Aim To obtain accurate MAP estimate for Semi-Metric MRFs efficiently lj ab(i,j) a(i) : arbitrary li ab(i,j) = sab d(i,j) sab ≥ 0 b(j) a(i) Vb Va f* = arg minf a(f(a)) +  ab(f(a),f(b))

  5. Visualizing Metrics l1 w2 w1 l2 l5 w3 w8 w7 w9 w4 w6 l4 l3 w5 d( i , j ) : shortest path defined by the graph

  6. Overview + f1 f2 f

  7. Outline • Simpler Metrics • Labeling for Simpler Metrics • Approximating General Metrics/Semi-Metrics • Combining Labelings • Results

  8. r-HST Metrics w1 w1 w2 w2 w3 w3 w2 w3 l1 l2 l3 l4 l5 l6 Graph is a Tree. Labels are leaves Edge lengths for all children are the same

  9. r-HST Metrics w1 w1 w2 w2 w3 w3 w2 w3 l1 l2 l3 l4 l5 l6 Edge lengths decrease by factor r ≥ 2 w2 ≤ w1/r w3 ≤ w1/r

  10. Outline • Simpler Metrics • Labeling for Simpler Metrics • Approximating General Metrics/Semi-Metrics • Combining Labelings • Results

  11. r-HST Metric Labeling w1 w1 w2 w2 w3 w3 w2 w3 l1 l2 l3 l4 l5 l6 r-HST Metrics admit Divide-and-Conquer Divide original problem into subproblems

  12. r-HST Metric Labeling w1 w1 w2 w2 w3 w3 w2 w3 l1 l2 l3 l4 l5 l6 Subproblem defined at vertex ‘m’ f* = arg minf a(f(a)) +  ab(f(a),f(b)) such that f(a)  m

  13. r-HST Metric Labeling w1 w1 w2 w2 w3 w3 w2 w3 l1 l2 l3 l4 l5 l6 Trivial problem f* = arg minf a(f(a)) +  ab(f(a),f(b)) such that f(a)  { l4}

  14. r-HST Metric Labeling w1 w1 w2 w2 w3 w3 w2 w3 l1 l2 l3 l4 l5 l6 Original problem f* = arg minf a(f(a)) +  ab(f(a),f(b)) such that f(a)  { l1, …, l6}

  15. r-HST Metric Labeling Problems get tougher as we move up Solve the simple subproblems (starting with trivial subproblems) Use their solutions to solve difficult subproblems

  16. f2 f3 f1 r-HST Metric Labeling w w w Find new labeling using -Expansion

  17. f2 f3 f1 r-HST Metric Labeling w w w Continue till we reach the root

  18. Analysis w w m w Mathematical Induction All variables Va such that f*(a)  m 1 bound on the unary potentials 2r/(r-1) bound on the pairwise potentials

  19. Analysis w w m w Mathematical Induction Initial step of M.I. trivial (for leaf nodes) Given children, prove for parent

  20. Analysis w w w  a(f(a)) + f(a) = fi(a) f(b) = fi(b) i  ab(fi(a),fi(b)) + f(a) = fi(a) f(b) = fj(b) i≠j  ab(fi(a),fj(b))

  21. Analysis w w w  a(f*(a)) + i  ab(fi(a),fi(b)) + i≠j  ab(fi(a),fj(b))

  22. Analysis w w w  a(f*(a)) + 2r i  ab(f*(a),f*(b)) + r-1 i≠j  ab(fi(a),fj(b))

  23. Analysis w w w  a(f*(a)) + 2r i  ab(f*(a),f*(b)) + r-1 dmax i≠j  ab(f*(a),f*(b)) 2 dmin

  24. Analysis w w w dmin = 2w dmax = 2w(1+1/r+1/r2+….)

  25. Analysis w w w  a(f*(a)) + 2r i  ab(f*(a),f*(b)) + r-1 2r i≠j  ab(f*(a),f*(b)) r-1

  26. Analysis Overall approximation bound 2r/(r-1) Previous best bound 2r/(r-2) Not Tight ?

  27. Overview + f1 f2 f

  28. Outline • Simpler Metrics • Labeling for Simpler Metrics • Approximating General Metrics/Semi-Metrics • Combining Labelings • Results

  29. minD,Pr(.) maxi≠j ∑tPr(t) dt(i,j) d(i,j) Approximating Metrics Given distance d(.,.) D = {dt(.,.), t = 1,2,… T}, dt(i,j) ≥ d(i,j) Pr(.) over the elements of D

  30. Approximating Metrics w1 w1 w2 w2 w3 w3 w2 w3 l1 l2 l3 l4 l5 l6 r-HST : hierarchical clustering of labels Use a clustering algorithm

  31. Approximating Metrics Fakcharoenphol, Rao and Talwar, 2003 max d(i,j) = 2M mini≠j d(i,j) > 1 Sample   [1,2] Choose a permutation π of labels Level ‘1’ = { l1,…, lh} Level ‘2’ Clustering at level 2??

  32. Level ‘m-2’ Level ‘m-1’ Approximating Metrics Fakcharoenphol, Rao and Talwar, 2003 max d(i,j) = 2M mini≠j d(i,j) > 1 Sample   [1,2] Choose a permutation π of labels Clustering at level m??

  33. Approximating Metrics Fakcharoenphol, Rao and Talwar, 2003 l1 l2 l3 d(1,4) ≤ 2M-m ? π l4 l1 l3 l2 l6 l5

  34. Approximating Metrics Fakcharoenphol, Rao and Talwar, 2003 l2 l3 d(2,4) ≤ 2M-m ? π l4 l1 l3 l2 l6 l5 l1

  35. Approximating Metrics Fakcharoenphol, Rao and Talwar, 2003 l2 l3 d(2,1) ≤ 2M-m ? π l4 l1 l3 l2 l6 l5 l1

  36. Approximating Metrics Fakcharoenphol, Rao and Talwar, 2003 l3 d(3,4) ≤ 2M-m ? π l4 l1 l3 l2 l6 l5 l1 l2

  37. Approximating Metrics Fakcharoenphol, Rao and Talwar, 2003 Edge length = Diameter of cluster / 2 π l4 l1 l3 l2 l6 l5 l3 l1 l2

  38. Approximating Metrics Fakcharoenphol, Rao and Talwar, 2003 Choose . Choose π Initialize root node as trivial cluster (all labels) Choose a cluster at level m-1 Run procedure to get clusters at level m Repeat for all clusters at level m-1 Stop when all clusters are singletons Repeat to get a set of r-HST metrics

  39. Analysis Fakcharoenphol, Rao and Talwar, 2003 d(i,j) ≤ ∑Pr(t) dt(i,j) ≤ O(log h) d(i,j) How many r-HST metrics ?? O(h log h) Charikar, Chekuri, Goel, Guha and Plotkin, 1998

  40. Approximating Semi-Metrics d(i,j) - d(j,k) ≤  d(i,k) d(i,j) ≤ ∑Pr(t) dt(i,j) ≤ O(( log h)2) d(i,j) How many r-HST metrics ?? O(h log h)

  41. Overview + f1 f2 f

  42. Outline • Simpler Metrics • Labeling for Simpler Metrics • Approximating General Metrics/Semi-Metrics • Combining Labelings • Results

  43. Combining Labelings Use -Expansion !!

  44. Analysis Bound for r-HST Labeling = O(1) Distortion for Metrics = O(log h) Bound for Metric Labeling = O(log h) Distortion for Semi-Metrics = O(( log h)2) Bound for Semi-Metric Labeling = O(( log h)2)

  45. Analysis When h < n, all known LP bounds can be obtained using move making algorithms.

  46. Refining the Labeling Current energy Q(f; d) = Q(f; dt) Q(f’; d) ≤ Q(f’; dt), f’ ≠ f Fakcharoenphol, Rao and Talwar, 2003 Find best ft according to dt(.,.) r-HST Metric Labeling f = ft. Repeat till convergence.

  47. Outline • Simpler Metrics • Labeling for Simpler Metrics • Approximating General Metrics/Semi-Metrics • Combining Labelings • Results

  48. Synthetic Data

  49. Synthetic Data

  50. Image Denoising

More Related