1 / 29

Arithmetic Building Blocks

Arithmetic Building Blocks. Datapath elements Adder design Static adder Dynamic adder Multiplier design Array multipliers Shifters, Parity circuits. A Generic Digital Processor. M. E. M. O. R. Y. Input-Output. C. O. N. T. R. O. L. D. A. T. A. P. A. T. H.

meganhunt
Download Presentation

Arithmetic Building Blocks

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Arithmetic Building Blocks • Datapath elements • Adder design • Static adder • Dynamic adder • Multiplier design • Array multipliers • Shifters, Parity circuits Krish Chakrabarty

  2. A Generic Digital Processor M E M O R Y Input-Output C O N T R O L D A T A P A T H Krish Chakrabarty

  3. Building Blocks for Digital Architectures • Arithmetic unit Bit-sliced datapath adder - ( , multiplier, shifter, comparator, etc.) • Memory - RAM, ROM, Buffers, Shift registers • Control - Finite state machine (PLA, random logic.) - Counters • Interconnect - Switches - Arbiters - Bus Krish Chakrabarty

  4. Bit-Sliced Design Metal 2 (control) Signals Data Control C o n t r o l Metal 1 (data) B i t 3 B i t 2 Data-in Multiplier Data-out Register Adder Shifter B i t 1 B i t 0 T i l e i d e n t i c a l p r o c e s s i n g e l e m e n t s Krish Chakrabarty

  5. Single-Bit Addition Half Adder Full Adder Krish Chakrabarty

  6. Full-Adder A B F u l l C o u t a d d e r C i n S u m Krish Chakrabarty

  7. The Binary Adder A B F u l l C i n C o u t a d d e r S u m Sum = A  B  C = ABCi + ABCi + ABCi + ABCi Co = AB + BCi + ACi Krish Chakrabarty

  8. Sum and Carry as a functions of P, G D e f i n e 3 n e w v a r i a b l e w h i c h O N L Y d e p e n d o n A , B G e n e r a t e ( G ) = A B +B P r o p a g a t e ( P ) = A Krish Chakrabarty

  9. A B A B A B A B 3 3 2 2 1 1 0 0 C C C C C o , 3 o , 2 o , 1 o , 0 i , 0 F A F A F A F A ( = C ) i , 1 S S S S 3 2 1 0 W o r s t c a s The Ripple-Carry Adder e d e l a y l i n e a r w i t h t h e n u m b e r o f b i t s t = O ( N ) d td = (N-1)tcarry + tsum G o a l : M a k e t h e f a s t e s t p o s s i b l e c a r r y p a t h c i r c u i t Krish Chakrabarty

  10. Complimentary Static CMOS Full Adder Note: 1) S = ABCi + Co(A + B + Ci) 2) Placement of Ci 3) Two inverter stages for each Co O(N) delay Krish Chakrabarty

  11. Inversion Property Inverting all inputs results in inverted outputs Krish Chakrabarty

  12. Minimize Critical Path by Reducing Inverting Stages E v e n C e l l O d d C e l l A3 B3 A1 B1 A2 A0 B2 B0 C C C C C o , 3 o , 2 o , 1 o , 0 i , 0 F A ’ F A F A ’ F A S0 S1 S2 S3 E x p l o i t I n v e r s i o n P r o p e r t y Need two different types of cells, FA’: no inverter in carry path Krish Chakrabarty

  13. A better structure: the Mirror Adder Krish Chakrabarty

  14. The Mirror Adder • Symmetrical NMOS and PMOS chains • identical rising and falling transitions if the NMOS and PMOS devices are properly sized. • Maximum of two series transistors in the carry-generation circuitry. • Critical issue: minimization of the capacitance at Co. • Reduction of the diffusion capacitances important. • The capacitance at Co composed of four diffusion capacitances, two internal gate capacitances, and six gate capacitances in the connecting adder cell . • Transistors connected to Ci placed closest to output. • Only the transistors in carry stage have to be optimized for speed. All transistors in the sum stage can be minimal size. Krish Chakrabarty

  15. NP-CMOS Adder 17 transistors, ignoring extra inverters for inputs and outputs Krish Chakrabarty

  16. P P P P 0 1 2 3 C i , 0 G G G 0 1 2 Manchester Carry Chain V D D  P 4 Co,4 G G 3 4  • Only nMOS transmission gates used. Why? • Delay of long series of pass gates: add buffers Krish Chakrabarty

  17. Carry-Bypass Adder P G P G P G P G 0 1 0 1 2 2 3 3 C C C C C i , 0 o , 3 o , 0 o , 1 o , 2 F A F A F A F A P G P G P G P G 0 1 0 1 2 2 3 3 B P = P P P P o 1 2 3 C C C C i , 0 o , 0 o , 1 o , 2 F A F A F A F A C o , 3 I d e a : I f ( P 0 a n d P 1 a n d P 2 a n d P 3 = 1 ) t h e n C = C , e l s e “ k i l l ” o r “ g e n e r a t e ” . o 3 0 Krish Chakrabarty

  18. B P P P P P 0 1 2 3 C i , 0 G G G G 1 0 2 3 B P Manchester-Carry Implementation C o , 3 Krish Chakrabarty

  19. B i t 0 - 3 B i t 4 - 7 B i t 8 - 1 1 B i t 1 2 - 1 5 S e t u p S e t u p S e t u p S e t u p C a r r y C a r r y C a r r y C a r r y C P r o p a g a t i o n P r o p a g a t i o n P r o p a g a t i o n P r o p a g a t i o n i , 0 S u m S u m S u m S u m Carry-Bypass Adder (cont.) Design N-bit adder using N/M equal length stages e.g. N = 16, M = 4 What is the critical path? tp = tsetup + Mtcarry + (N/M-1)tbypass + Mtcarry + tsum , i.e. O(N) Krish Chakrabarty

  20. Carry Ripple versus Carry Bypass t p r i p p l e a d d e r b y p a s s a d d e r 4 . . 8 N Krish Chakrabarty

  21. Carry-Select Adder Generate carry out for both “0” and “1” incoming carries S e t u p P , G 4-bit block for bits k, k+1, k+2, k+3 " 0 " C a r r y P r o p a g a t i o n " 0 " " 1 " " 1 " C a r r y P r o p a g a t i o n C M u l t i p l e x e r C o , k - 1 o , k + 3 C a r r y V e c t o r S u m G e n e r a t i o n Krish Chakrabarty

  22. Carry Select Adder: Critical Path Krish Chakrabarty

  23. Carry-Select Adder: Linear Configuration (1) (1) (5) (5) (5) (5) (5) (8) (6) (7) Are equal-sized blocks best? Krish Chakrabarty

  24. S e t u p S e t u p S e t u p S e t u p " 0 " C a r r y " 0 " C a r r y " 0 " C a r r y " 0 " C a r r y " 0 " " 0 " " 0 " " 1 " C a r r y " 1 " C a r r y " 1 " C a r r y " 1 " C a r r y " 1 " " 1 " " 1 " M u l t i p l e x e r M u l t i p l e x e r M u l t i p l e x e r M u l t i p l e x e r S u m G e n e r a t i o n S u m G e n e r a t i o n S u m G e n e r a t i o n S u m G e n e r a t i o n Linear Carry Select B i t 0 - 3 B i t 4 - 7 B i t 8 - 1 1 B i t 1 2 - 1 5 " 0 " " 1 " C C C C C i , 0 o , 3 o , 7 o , 1 1 o , 1 5 S S S S 0 - 3 4 - 7 8 - 1 1 1 2 - 1 5 Krish Chakrabarty

  25. S e t u p S e t u p S e t u p S e t u p " 0 " C a r r y " 0 " C a r r y " 0 " C a r r y " 0 " C a r r y " 0 " " 0 " " 0 " " 1 " C a r r y " 1 " C a r r y " 1 " C a r r y " 1 " C a r r y " 1 " " 1 " " 1 " M u l t i p l e x e r M u l t i p l e x e r M u l t i p l e x e r M u l t i p l e x e r S u m G e n e r a t i o n S u m G e n e r a t i o n S u m G e n e r a t i o n S u m G e n e r a t i o n Square Root Carry Select Bit 0-1 Bit 5-8 Bit 2-4 Bit 9-13 (1) " 0 " (1) " 1 " (5) (4) (6) (3) (3) (6) (4) (5) C C C C C i , 0 o , 3 o , 7 o , 1 1 o , 1 5 i.e., O(N) Krish Chakrabarty

  26. Adder Delays - Comparison Krish Chakrabarty

  27. Carry Look-Ahead - Basic Idea SN-1 S1 S0 Delay “independent” of the number of bits Krish Chakrabarty

  28. 16-bit CLA based on 4-bit slices and ripple carry Faster implementation CLA generator 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 Carry-Lookahead Adders • High fanin for large N • Implement as CLA slices, or use 2nd level lookahead generator Krish Chakrabarty

  29. Look-Ahead: Topology VDD G3 G2 G1 G0 Ci,0 Co,3 P0 P1 P2 P3 Gnd Krish Chakrabarty

More Related