580 likes | 743 Views
Chemical Principles Visualized: Seeing the unseen. David A. Katz Department of Chemistry Pima Community College Tucson, AZ 85745, USA Voice: 520-206-6044 Email: dkatz@pima.edu Web site: www.chymist.com. Chemistry is “hard”!. Technical vocabulary
E N D
Chemical Principles Visualized: Seeing the unseen David A. Katz Department of Chemistry Pima Community College Tucson, AZ 85745, USA Voice: 520-206-6044 Email: dkatz@pima.edu Web site: www.chymist.com
Chemistry is “hard”! • Technical vocabulary • Concepts and abstractions – difficult to relate to everyday • Difficult to visualize electrons, atoms, molecules, reactions, etc… • Cannot memorize information – must have some degree of understanding • Boring lectures (“chalk talks”) with a lot of information (information overload) • Requires math
Chemistry is Fun! • Chemistry, as an experimental science, is not just an intellectual pursuit, but, a hands-on (or “hands-in”) science. • Through chemistry we can create a wondrous range of substances and materials with unique colors, odors, and properties. • None of the physical or natural sciences are as creative as chemistry.
Students, on the average, have little or no concrete concepts or experiences of the phenomena described in a college chemistry course. • Even with prep courses, typical instructors just talk about chemistry and chemical reactions. • Students cannot think in 3-D. • Students have limited visualization skills • Pictures may help • Videos are better • Live demonstrations and hands-on activities in the classroom enhance the learning of concepts.
Learning needs to be multisensory Not this: This does not work This: Visualize Touch Smell Think
At the 14th International Conference on Chemical Education, University of Queensland, Brisbane, Australia, July 14-19, 1996, Roy Tasker, Bob Bucat, Ray Sleet and Bill Chia, unveiled molecular-level animations which are known as the VisChem project. Tasker, R. & West, T. with Lockyer, L. & Harper, B. (2002). Chemistry Molecular Level Construction Tool. Retrieved August 16, 2009 , from Learning Designs Web site: http://www.learningdesigns.uow.edu.au/tools/info/T4/index.html
Modern textbooks are now employing macro-to-micro diagrams and animations of “molecules” are also available. • These diagrams, often presented early in a textbook, precede discussions of chemical bonding and molecular geometries, as well as the chemical interactions they may represent. • Not only must students be trained in understanding these diagrams, but they need to experience the actual phenomena being depicted.
These occur early in the textbook. Little explanation is given. Single particle “atoms” are easy to understand, water is more difficult.
Concept is good, but students do not understand the “open” structure of ice as compared with liquid water
This is better. • It shows the student a progression of formula representations. • At this point in the course, shapes have little or no meaning to students. • Also, students are not familiar with ball-and-stick vs space filling models.
Molecular ShapesUsing Modeling Clay and Toothpicks • The shape of a molecule plays an important role in its reactivity. • Students cannot think in 3-D • Manipulating “atoms” into molecular shapes formalizes VSEPR • Teach shapes BEFORE Lewis dot structures
Molecular Shapes Modeling clay and toothpicks to build shapes MX2 – linear, 180° bond angle Characteristic of Periodic Table Group IIA
Molecular Shapes MX3 triangular planar (trigonal planar) 120° bond angle Characteristic of Periodic Table Group IIIA
Molecular Shapes MX4 tetrahedral 109.5° bond angle Characteristic of Periodic Table Group IVA Students must physically form a 3-D structure
Molecular Shapes Molecules with non-bonded electron pairs Trigonal pyramid 107.5° bond angle Characteristic of Periodic Table Group VA Bent 104.5° bond angle Characteristic of Periodic Table Group VIA
Students can build some models using The Molecular Level Visualization Tool Roy Tasker, et. al., http://www.learningdesigns.uow.edu.au/tools/info/T4/index.html
LABORATORY EXPERIMENTSand CLASS ACTIVITIES The Scientific Method • Observation/Event • Hypothesis • Experiment • Communication/Publication • Research Grant • Experiment • Theory? • Verification/modification of theory ---------------------------- 9. Physical Law
The Scientific Method Hypothesis and Experiment 4 cards Each has a number on one side and a letter on the other side. Two letters showing, two numbers showing Hypothesis: Any card with a vowel (A, E, I, O, U) on one side has an even number (0, 2, 4, 6, 8) on the other side. Question: How many cards must we turn over to prove (or disprove) the hypothesis?
Scientific Method Mystery powders: How to do an investigation • 4 white powders: • Salt • Starch • Powdered sugar • Baking soda • 3 liquids: • Water (w) • Vinegar (v) • Iodine solution (i) • Unknown mixtures of 2 or 3 powders • Identify by properties only.
UV Light Uranium glass Tide laundry detergent
Visible Light An overhead projector spectroscope Holographic diffraction grating Slit and colored filters
Visible Light An overhead projector spectroscope Holographic diffraction grating Slit and colored filters
Viewing spectra using holographic diffraction grating (Flinn Scientific C-Spectra) The Electromagnetic Spectrum Hydrogen spectrum Helium spectrum
How do we identify elements in space? • Build a spectroscope: • In class: Identify elements • using spectrum tubes • Homework: Find elements • in your environment The Electromagnetic Spectrum
Colored Flames Strontium – red Lithium - red Calcium – red/orange Copper – green or blue Barium – yellow-green Potassium – violet Sodium - yellow
Optical Rotation • An optically active compound can rotate light • Due to an asymmetrical carbon atom (carbon bonded to 4 different groups) • Enantiomers: molecules are mirror images of themselves • Solutions of the D- isomer twists the light clockwise; L-isomer twists light counter-clockwise Dextrose (d-glucose) solution in polarized light on an overhead projector
Density Indiana Jones – Raiders of the Lost Ark
Hot and Cold Separate water by density HOT COLD COLD HOT
Chemical Formulas and Nomenclature Formula cards – polyatomic ions treated as single units
Chemical Reactions What factors indicate a chemical reaction occurred?
The Synthesis of Zinc Iodide: Tracking a Chemical Reaction Test properties of powdered zinc Test properties of iodine Mix zinc and iodine in a petri dish Place in a zip-lock bag Add water Filter resulting solution Test properties of solution Evaporate to dryness Add water and test properties of solution Explain what happened Write balanced equation
Chemical Reactions Visualizing reaction stoichiometry CH4 + O2 CO2 + H2O
Chemical Reactions Visualizing reaction stoichiometry CH4 + 2 O2 CO2 + 2 H2O
The Activity Series Group I Group II Group III Transition elements Group IV Hydrogen Group IB (jewelry and tooth fillings)
Intermolecular forces Drops of water on a coin How many drops of water can you put on a coin? Why?
1. Intermolecular forces using I2 • Iodine vapor • Iodine-hexane: Nonpolar interactions (London forces)
2. Intermolecular forces using I2 Dipole - Induced dipole
3. Intermolecular forces using I2 Ion – induced dipole
4. Intermolecular forces using I2 • Solubility preference: • Like dissolves like Hexane layer Water layer
Intermolecular Forces:Which Will Evaporate First? What factors affect evaporation? Spread these compounds on black chalkboards Water methanol ethanol 2-propanol Effect of molecular weight: H2O = 18 CH3OH = 32 C2H5OH = 46 C3H8OH = 60 Effect of polarity
Visualizing Equilibrium Students start with 2 containers of colored water, 2 400-mL beakers, and 2 500-mL graduated cylinders One student switches to a 150-mL beaker while the second student uses a 400-mL beaker, and continues the process