300 likes | 318 Views
Particle Spectra at AGS, SPS and RHIC. Dieter Röhrich Fysisk institutt, Universitetet i Bergen Similarities and differences Rapidity distributions net protons produced particles Transverse mass spectra Hydrodynamics. Proton rapidity distribution.
E N D
Particle Spectra at AGS, SPS and RHIC Dieter Röhrich Fysisk institutt, Universitetet i Bergen • Similarities and differences • Rapidity distributions • net protons • produced particles • Transverse mass spectra • Hydrodynamics
Proton rapidity distribution • AGS energies – centrality dependence B. Back et al., E917 Collaboration. Phys. Rev. Lett. 86 (2001) 1970
Proton rapidity distribution • AGS energies, central collisions - energy dependence B. Back et al., E917 Collaboration. Phys. Rev. Lett. 86 (2001) 1970
Stopping • Rapidity shift - energy dependence F. Videbæk, nucl-ex/0106017
Net proton rapidity distribution – centrality dependence • SPS, 158 GeV/nucl., NA49 • RHIC, sNN= 130 GeV, STAR, BRAHMS N. Xu, QM2001
Proton and antiproton rapidity distributions • SPS, 158 GeV/nucl., NA49
Antiproton/proton ratio – rapidity distribution • SPS, 158 GeV/nucl., NA49 • RHIC, sNN= 130 GeV, BRAHMS
Antiproton/proton ratio – centrality dependence • SPS, 158 GeV/nucl., NA49 • RHIC, sNN= 130 GeV, BRAHMS
Rapidity distributions N. Herrmann, J. P. Wessels and T. Wienold, Ann. Rev. Nucl. Part. Sci. 49 (1999) 581, and references therein • AGS, 10.8 AGeV + =- K+ broader than K- p
Pion rapidity distribution • Comparison + and - • SPS, central Pb+Pb, 158 GeV/nucl. NA49 Same widths for + and -
Kaon rapidity distribution • Comparison K+ and K- • SPS, central Pb+Pb, 40 GeV/nucl. • NA49 Different widths for K+ and K-
-rapidity distribution • Comparison + and - • SPS, central Pb+Pb, 158 GeV/nucl. • NA49 A. Billmeier, PhD thesis, 2001; R. Barton, J. Phys. G27 (2001) 367 - + Different widths for + and -
Rapidity distributions • Suddenly hadronizing QGP-fireball + remaining internal longitudinal flow of colliding quarks • J. Letessier, J. Rafelski, hep-ph/0106151 SPS NA49 = 1.22 K+ = 1.25 (K- = 1.17)
1/mT dN/dmT (a.u.) Transverse momentum spectra X.-N. Wang, QM01 • Inv. CS Hard component: next session Soft component: • Transverse mass spectra fit function: 1/mTdN/dmT ~ exp(-mT/T) • fit range: • : pT ~ .3 – 1 GeV/c heavier hadrons: pT 1.5–2 GeV/c
Transverse mass spectra • Comparison K+ and K- • SPS, NA44 Histograms: RQMD; fit: 1/mTdN/dmT ~ exp(-mT/T)
Transverse mass spectra • Comparison + and - • SPS, Pb+Pb, 158 GeV/nucl., different centralities • WA97 • Central Pb+Pb collisions, inverse slopes: X- = 305 ± 25 MeV, X+ = 287 ± 30 MeV; • Similar spectra for particle/antiparticle
e(-mt/T) Transverse mass spectra • Comparison and RHIC, central Au+Au (14%) • STAR No feed-down correction L (x2) L T=352+-7 MeV • Identical slope parameters • Indication of deviations from single slope fit at low and high mT
Centrality dependence of transverse mass spectra (1) • SPS, 158 GeV/nucl., WA97: W-+ W+ No dependence STAR, submitted to Phys. Rev. Lett. • RHIC, • STAR: • F K-K+ No dependence
Centrality dependence of transverse mass spectra (2) J.W. Harris, QM01 • RHIC, Au+Au STAR: K- Slight dependence • RHIC, Au+Au • STAR: p J.W. Harris, QM01 Strong dependence
Inverse slope parameter –p+p vs Pb+Pb NA49; A.M. Rossi, Nucl. Phys. B84 (1975) 269 • SPS, • p+p • SPS, • central • Pb+Pb
Inverse slope parameter vs particle mass (1) STAR data: C. Roy, this conference • RHIC, central Au+Au Kp
Inverse slope parameter vs particle mass (2) • Comparison RHIC (central Au+Au) and SPS (central Pb+Pb) STAR data: C. Roy, this conference Kp d J/
Inverse slope parameter vs sqrt(s) Central Au+Au(Pb+Pb) p+p • f K-K+ NA49, STAR Nucl.Phys. A661(1999)506 Phys.Rev.Lett B491(2000)59 Nucl.Phys. B203(1982)27
Sudden breakup of QGP-fireball • Thermal freeze-out conditions = chemical freeze-out • SPS, central Pb+Pb, WA97 data • J. Rafelski, G. Torrieri, J. Letessier, hep-ph/0104132 Tfo,global 145 MeV v 0.52c
Hydrodynamics motivated mT fit (1) • SPS, central Pb+Pb; • H. Appelshaeuser (NA49), Eur. Phys. J. C2 (1998) 661; B. Tomasik, U. Wiedemann, U.W. Heinz, nucl th/9907096 • Correlate - transverse mass spectrum and -- Bose-Einstein correlations • 2 contour plots for the fits of the single particle mT-spectrum and of the Cartesian HBT radii Tfo 100 MeV <v> 0.55c
p b s R Hydrodynamics motivated mT fit (2) • RHIC, central Au+Au; STAR • S. Margetis, ThermalFest, 2001; P. Jones, this conference Shape of the mT spectrum depends on particle mass, mT-range, flow profile: where STAR Preliminary and solid : used in fit flow profile used: r =s (r/R)0.5 - K- 1/mT dN/dmT (a.u.) E.Schnedermann et al, PRC48 (1993) 2462 mT - m0[GeV/c2]
p K- - Hydrodynamics motivated mT fit (3) • RHIC, central Au+Au; STAR • S. Margetis, ThermalFest, 2001; P. Jones, this conference 2 map (contour plot for 95.5%CL) At chi square minimum Tth = 0.13[GeV] <r > = 0.52 [c] Tth[GeV] 0 0.4 0 0.4 <r > [c] • Strong radial flow at RHIC ßr (RHIC) = 0.52c Tfo (RHIC) = 0.13 GeV
t() f() 1 Hydrodynamics motivated mT fit (4) • RHIC, central Au+Au, -K-p; PHENIX • J. Buward-Hoy, ThermalFest, 2001 1/mt dN/dmt = A f() d mT K1( mT /Tfo cosh ) I0( pT /Tfo sinh ) PHENIX Preliminary where radius r= r/R, particle density distribution: linear velocity profile: Tfo ~ 125 - 83 MeV ~ 104 MeV t ~ 0.6 - 0.8 ~ 0.7 < t> ~ 0.4 - 0.6 ~ 0.5
Hydro + Cascade model • SPS, RHIC, central Pb+Pb (Au+Au) • D. Teaney, J. Lauret, E.V. Shuryak, nucl-th/0104041 • RHIC, central Au+Au; PHENIX • J. Buward-Hoy, ThermalFest, 2001 • , K • Tfo ~ 135 MeV • <t > ~ 0.55 • nucleons • Tfo ~ 120 MeV • <t > ~ 0.6
Summary • Variety of shapes of rapidity distributions • Complex transverse mass spectra • Hydrodynamics • Strong radial flow • t 0.5-0.7c • Sudden QGP break up model: • Tglobal 145 MeV (SPS) • Hydro mT-fits: • Tfo, thermal 100-130 MeV