590 likes | 734 Views
Eddies: Continuously Adaptive Query processing . R. Avnur, J.M. Hellerstein UCB ACM Sigmod 2000. Problem Statement. Context: large federated and shared-nothing databases Problem: assumptions made at query optimization rarely hold during execution
E N D
Eddies: Continuously Adaptive Query processing R. Avnur, J.M. Hellerstein UCB ACM Sigmod 2000
Problem Statement • Context: large federated and shared-nothing databases • Problem: assumptions made at query optimization rarely hold during execution • Hypothesis: do away with traditional optimizers, solve it thru adaptation • Focus: scheduling in a tuple-based pipeline query execution model
Problem Statement Refinement • Large scale systems are unpredictable, because • Hardware and workload complexity, • bursty servers & networks, heterogenity, hardware characteristics • Data complexity, • Federated database often come without proper statistical summaries • User Interface Complexity • Online aggregation may involve user ‘control’
Research Laboratory setting • Telegraph, a system designed to query all data available online • River, a low level distributed record management system for shared-nothing databases • Eddies, a scheduler for dispatching work over operators in a query graph
The Idea • Relational algebra operators consume a stream from multiple sources to produce a new stream • A priori you don’t now how selective- how fast- tuples are consumed/produced • You have to adapt continuously and learn this information on the fly • Adapt the order of processing based on these lessons
JOIN JOIN JOIN The Idea next next next next next next
The Idea • Standard method: derive a spanning tree over the query graph • Pre-optimize a query plan to determine operator pairs and their algorithm, e.g. to exploit access paths • Re-optimization a query pipeline on the fly requires careful state management, coupled with • Synchronization barriers • Operators have widely differing arrival rates for their operands • This limits concurrency, e.g. merge-join algorithm • Moments of symmetry • Algorithm provides option to exchange the role of the operands without too much complications • E.g switching the role of R and S in a nested-loop join
Nested-loop R s
Join and sorting • Index-joins are asymmetric, you can not easily change their role • Combine index-join + operands as a unit in the process • Sorting requires look-ahead • Merge-joins are combined into unit • Ripple joins • Break the space into smaller pieces and solve the join operation for each piece individually • The piece crossings are moments of symmetry
JOIN Tuple buffer JOIN JOIN Eddie next next next next The Idea next next next next
Rivers and Eddies Eddies are tuple routers that distribute arriving tuples to interested operators • What are efficient scheduling policies? • Fixed strategy? Random ? Learning? Static Eddies • Delivery of tuples to operators can be hardwired in the Eddie to reflect a traditional query execution plan Naïve Eddie • Operators are delivered tuples based on a priority queue • Intermediate results get highest priority to avoid buffer congestion
Observations for selections • Extended priority queue for the operators • Receiving a tuple leads to a credit increment • Returning a tuple leads to a credit decrement • Priority is determined by “weighted lottery” • Naïve Eddies exhibit back pressure in the tuple flow; production is limited by the rate of consumption at the output • Lottery Eddies approach the cost of optimal ordering, without a need to a priory determine the order • Lottery Eddies outperform heuristics • Hash-use first, or Index-use first, Naive
Observations • The dynamics during a run can be controlled by a learning scheme • Split the processing in steps (‘windows’) to re-adjust the weight during tuple delivery • Initial delays can not be handled efficiently • Research challenges: • Better learning algorithms to adjust flow • Aggressive adjustments • Remove pre-optimization • Balance ‘hostile’ parallel environment • Deploy eddies to control degree of partitioning (and replication)
Database streams: You only get one chance to look Prof. Dr. Martin Kersten CWI Amsterdam March 2003
The tranquil database scene • Traditional DBMS – data stored in finite, persistent data sets, SQL-based applications to manage and access it OLTP-web application ‘Ad-hoc’ reporting Data entry application RDBMS
Informed reporting The tranquil database scene • The user community grows and MANY wants up-to-the-second (aggregate) information from the database OLTP-web application ‘Ad-hoc’ reporting Data entry application RDBMS
Informed reporting The tranquil database scene • Database entry is taken over by a remote device which issues a high-volume of update transactions OLTP-web application ‘Ad-hoc’ reporting Data entry application Dataentry application RDBMS
Informed reporting The tranquil database scene • Database entry is taken over by MANY remote devices which issues a high-volume of update transactions OLTP-web application ‘Adhoc’ reporting Dataentry application Dataentry application RDBMS
Informed reporting The tranquil database scene • Database solutions can not carry the weight OLTP-web application ‘Adhoc’ reporting Dataentry application Dataentry application RDBMS
Application domains • Personalized financial tickers • Personalized information delivery • Personalized environment control • Business to business middelware • Web-services application based on XML exchange • Monitoring the real-world environment (pollution, traffic) • Monitoring the data flow in an ISP • Monitoring web-traffic behaviour • Monitoring the load on a telecom switch • Monitoring external news-feeds
Application domains • Personalized financial tickers • Personalized information delivery • Personalized environment control • Business to business middelware • Web-services application based on XML exchange • Monitoring the real-world environment (pollution, traffic) • Monitoring the data flow in an ISP • Monitoring web-traffic behaviour • Monitoring the load on a telecom switch • Monitoring external news-feeds
Application domains • Personalized • Personalized • Personalized • middelware • on XML exchange • Monitoring • Monitoring • Monitoring • Monitoring • Monitoring QUERYING WEB SERVICES STREAM UPDATE
Continuous queries • Continous query – the user observes the changes made to the database through a query • Query registration once • Continously up-to-date answers. Continuous queries RDBMS
Data Streams • Data streams • The database is in constant bulk load mode • The update rate is often non-uniform • The entries are time-stamped • The source could be web-service, sensor, wrapped source Dataentry application DSMS
Informed reporting DSMS Data Stream Management Systems (DSMS) support high volume update streams and real-time response to ad-hoc complex queries. What can be salvaged from the DBMS core technology ? What should be re-designed from scratch ? Dataentry application DSMS
Persistent relations Transaction oriented One-time queries Precise query answering Access plan determines physical database design Transient streams Query orientation Continuous queries Best-effort query answering Unpredictable data characteristics DBMS versus DSMS
Old technology to rescue? • Many stream based applications are low-volume with simple queries • Thus we can live with automatic query ‘refresh’ • Triggers are available for notification of changes • They are hooked up to simple changes to the datastore • There is no technology to merge/optimize trigger groups
DSMS DSMS DSMS Outline of remainder • Query processing over multiple streams • Organizing hundreds of ad-hoc queries • Sensor-network based querying
A stream application • [Widom] Consider a network traffic system for an ISP • with customer link and backbone link and two streams • keeping track of the IP traffic
DSMS A stream application • [Widom] Consider a network traffic system for an ISP • with customer link and backbone link and two streams • keeping track of the IP traffic TPc(saddr, daddr, id, length, timestamp) TPb(saddr, daddr, id, length, timestamp) PTc PTb
A stream application • Q1 Compute the load on the backbone link averaged over one minute period and notify the operator when the load exceeds a threshold T Select notifyoperator(sum(length)) From PTb Group By getminute(timestamp) Having sum(length) >T With low stream flow it could be handled with a DBMS trigger, Otherwise sample the stream to get an approximate answer
A stream application • Q2 Find the fraction of traffic on the backbone link coming from the customer network to check cause of congestion. ( Select count(*) From PTc as C, PTb as B Where C.saddr = B.saddr and C.daddr=B.daddr and C.id=B.id ) / ( Select count(*) From PTb) Both streams might require an unbounded resource to perform the join, which could be avoided with an approximate answer and synopsis
A stream application • Q3 Monitor the 5% source-to-destination pairs in terms of traffic on the backbone. With Load As (Select saddr, daddr,sum(length) as traffic From PTb Group By saddr,daddr) Select saddr, daddr, traffic From Load as l1 Where (Select count(*) From Load as l2 Where l2.traffic <l1.traffic) > (Select 0.95*count(*) From Load) OrderBy Traffic This query contains ‘blocking’ operators
Answer Store Scratch Area TPc DSMS Trash TPb STREAM architecture Answer
Q1 Compute the load on the backbone link averaged over one minute period and notify the operator when the load exceeds a threshold T Select notifyoperator(sum(length)) From PTb Group By getminute(timestamp) Having sum(length) >T The answer store area simply needs an integer
Q2 Find the fraction of traffic on the backbone link coming from the customer network to check cause of congestion. ( Select count(*) From PTc as C, PTb as B Where C.saddr = B.saddr and C.daddr=B.daddr and C.id=B.id ) / ( Select count(*) From PTb) The scratch area should maintain part of the two streams to implement the join. Or a complete list of saddr and daddr.
Joining two tables RelA Nested loop join RelB
Joining two tables RelA Nested loop join RelB
Joining two stream PTa …….. Nested loop join PTb …….. An unbounded store would be required
Joining two stream PTa …….. merge join PTb …….. If the streams are ordered a simple merge join is possible With limited resource requirements
Joining two stream window PTa …….. histogram Join synopsis histogram PTb …….. A statistical summary could provide an approximate answer
Q3 Monitor the 5% source-to-destination pairs in terms of traffic on the backbone. With Load As (Select saddr, daddr,sum(length) as traffic From PTb Group By saddr,daddr) Select saddr, daddr, traffic From Load as l1 Where (Select count(*) From Load as l2 Where l2.traffic <l1.traffic) > (Select 0.95*count(*) From Load) OrderBy Traffic The scratch area should maintain part of the two streams to implement the join.
DSMS Finance • [DeWitt] Consider a financial feed where thousands of clients can register arbitrary complex continues queries. • XML stream querying XML
Finance • Q5 Notify me whenever the price of KPN stock drops below 6 euro Select notifyUser(name, price) From ticker t1 Where t1.name = “KPN” and t1.price < 6
Finance • Q5 Notify me whenever the price of KPN stock drops by 5% over the last hour Select notifyUser(name, price) From ticker t1,t2 Where t1.name = “KPN” and t2.name= t1.name and getminutes(t1.timestamp-t2.timestamp) <60 and t1.price < 0.95 * t2.price
Finance • Q6 Notify me whenever the price of KPN stock drops by 5% over the last hour and T-mobile remains constant Select notifyUser(name, price) From ticker t1,t2, t3,t4 Where t1.name = “KPN” and t2.name= t1.name and getminutes(t1.timestamp-t2.timestamp) <60 and t1.price < 0.95 * t2.price and t1.timestamp=t3.timestamp and t2.timestamp=t4.timestamp and t3.name = “T-Mobile” and t4.name= t3.name and getminutes(t3.timestamp-t4.timestamp) <60 and t3.price = t4.price
Query signatures • Traditional SQL applications already use the notion of parameterised queries, I.e. some constants are replaced by a program variable. • Subsequent calls use the same query evaluation plan • In a DSMS we should recognize such queries as quick as possible • Organize similar queries into a group • Decompose complex queries into smaller queries • Manage the amount of intermediate store
Finance • Queries can be organized in groups using a signature and evaluation can be replaced by single multi-user request. Select notifyUser(name, price) From ticker t1 Where t1.name = “KPN” and t1.price < 6
Finance • Queries can be organized in groups using a signature and evalution can be replaced by single multi-user request. Select notifyUser(c.client, t1.name, t1.price) From ticker t1, clients c Where t1.name = c.name and t1.price < c.price
Finance • Timer-based queries call for a stream window with incremental evaluation • Multiple requests can be organized by time-table and event detection methods provided by database triggers. Select notifyUser(name, price) From ticker t1,t2 Where t1.name = “KPN” and t2.name= t1.name and getminutes(t1.timestamp-t2.timestamp) <60 and t1.price < 0.95 * t2.price