1 / 27

微波工程期中報告 - 論文研讀報告

微波工程期中報告 - 論文研讀報告. 主題 : A New Broad-Band Method for Magnetic Thin-Film Characterization in the Microwave Range 報告人 : 四技網通四乙 49636098 羅冠閔 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005.

Download Presentation

微波工程期中報告 - 論文研讀報告

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 微波工程期中報告-論文研讀報告 主題: A New Broad-Band Method for Magnetic Thin-Film Characterization in the Microwave Range 報告人: 四技網通四乙 49636098 羅冠閔 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005 Southern Taiwan UniversityDepartment of Electronic Engineering

  2. Abstract • 本篇提出一種新的方法並且描述磁性薄膜的特性。挑戰新型微波電子技術,需要許多被動元件整哲在晶片上。其中,隔離器和環形器是含有磁性物質且非交互的被動設備。使用這些磁性薄膜的用來替代巨大的原料看起來似乎是整合這些晶片上組合的解決辦法。因此,重要的是要知道磁性薄膜在微波範圍內的磁性。一個隔離器的存在,在於通過磁性薄膜的共面線,但是,在它生產結束之前,往往測量檔案構成參數是很難的。其描述的方法遵循兩個參數在現場量測的滲透係數張量。 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005

  3. Index Terms • 各向異性介質 (Anisotropic media) • 鐵氧體 (ferrites) • 鐵氧體薄膜 (ferrite thin films) • 微波測量 (microwave measurement) • 滲透係數張量量測(permeability tensor measurement) IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005

  4. INTRODUCTION • 磁性材料的電磁性能最重要的就是微波被動元件的設計。隔離器和環行器,通常含有大量的鐵氧體。這些鐵氧體完全或部分採用的直流磁化磁場。因此,鐵氧體中變得各向異性。滲透係數張量的成分依賴物理適中的屬性和各式各樣有關頻率和應用的dc範圍。 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005

  5. MEASUREMENT CELL • 一個顯著的優勢,我們的方法包括使用一共面電池,製作過程不需要複雜的技術。使用射頻磁控濺鍍技術將薄膜放置在基板,並且加入金導體形成了共面線(Fig. 1)。當 DC應用磁磁場方向是橫向的(along the -axis in Fig. 1),此垂直xz之平面是自旋進動的微波磁場平面。極化微波磁場在這個平面為橢圓形(Fig. 2)。在這種配置下,鐵磁共振現象很明顯。當微波磁向量在一個非等方性的檔案被指定的點裡同方向地向磁向量的內部旋轉,傳導的波能量是被旋轉吸收的。在相反的情況下,不存在自旋波的相互作用。通過這種方式,傳播是一個非互易和平面隔離產生[13] -[15]。散射參數在細胞的磁性參數測量和構薄膜材料的提取。 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005

  6. Fig. 1.Cross section of the measurement cell Fig. 1.量測電池的橫切面 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005

  7. Fig. 2. Microwave magnetic field inside the film Fig.2 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005

  8. THEORY • 1. The following Maxwell’s equation is used: • 2.The permeability tensor is defined as [5] IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005

  9. THEORY • 3. • 4. • 5. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005

  10. THEORY • . • . • 6. • 7. • 8. As a consequence, the magnetic field components inside the magnetized film are IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005

  11. THEORY • 9. • 10. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005

  12. THEORY Using Maxwell’s second equation: • 11. • 12. • 13. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005

  13. THEORY • 14. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005

  14. THEORY IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005

  15. THEORY Applying this averaging procedure to (12)–(14), two equations from a simple algebra operation are obtained • 15. • 16. From (9), we also deduce that • 17. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005

  16. THEORY Substituting (16) and (14) into (15), we obtain • 18. • 19. • 20. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005

  17. THEORY Finally, the expressions for constitutive magnetic parameters are obtained as follows: • 21. • 22. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005

  18. Fig. 3. Flow graph used to determine S-parameters. Fig. 3 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005

  19. THEORY • 23. • 24. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005

  20. THEORY • 25. • 26. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005

  21. THEORY IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005

  22. CONCLUSION • 我們已經提出了一個新的寬帶方式的特點薄磁介質基片上沉積薄膜。兩個複雜張量參數的敏感性,得到使用簡單的解析關係。這項技術使我們能夠在高頻率範圍內測量晶片,此外,我們的方法仍然有效以外的準 TEM逼近。然而,這需要在磁化狀態以及在完全消磁狀態下量測電池。模擬結果跟理論精確協議模型一樣就像Polder’s模型。在YIG器件和BAM膜,是在測試下按照已知特性的磁性物質。進一步的測試必須解決修正係數的問題,儘管它很容易在測量前就可以確定。因此,這種技術已經可以拿來衡量薄膜的滲透係數張量, 並揭示其電磁性能。 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 4, APRIL 2005

  23. 心得感想 • 首先跟老師說聲抱歉,關於這篇論文,對我的打擊甚大,因為我看得非常痛苦,幾乎都是在google翻譯改來的,也不懂裡面的內容是在說什麼,太多我不知道的專業知識,雖然我本身知道自己的英文程度很差,但沒想到會這麼的痛苦。所以我會努力培養英文閱讀的能力,並且去學習關於這方面的專業知識。 • 我會好好磨練一番的!

  24. REFERENCES • [1] D. Polder, “On the theory of ferromagnetic resonance,” Philos. Mag.,vol. 40, p. 99, Jan. 1949. • [2] G. T.Rado, “Theory of the microwave permeability tensor and faradayeffect in nonsaturated ferromagnetic materials,” Phys. Rev., vol. 89, p.529,1953. • [3]E. Schloemasan, “Microwave behavior of partially magnetized ferrites,” J. Appl. Phys., vol. 41, pp. 204–214, Jan. 1970. • [4]J. J. Green and F. Sandy, “Microwave characterization of partially magnetized ferrites,” IEEE Trans. Microw. Theory Tech., vol. MTT-22, no.6, pp. 641–645, Jun. 1974. • [5]P. Gelin and K. Berthou-Pichavant, “New consistent model for ferrite permeability tensor with arbitrary magnetization state,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 8, pp. 1185–1192, Aug. 1997. • [6]Y. Hayakawa, A. Makino, H. Fujimori, and A. Inoue, “High resistive nanoerystalhine fe-m-o (m = hf; zr; rare-earth metals) soft magnetic films for high-frequency application,” J. Appl. Phys., vol. 81, no. 8, pp. 3747–3752, Apr. 1997.

  25. REFERENCES • [7]E. Schloemann, “Integrated DC/RF design theory for ferrite circulators,” J. Appl. Phys., vol. 81, no. 8, pp. 5070–5072, Apr. 1997. • [8]H. How, A. Olivier, W. McKnight, P. M. Zavracky, N. E. McGruer, C. Vittoria, and R. Schmidt, “Theory and experiment of thin-film junction circulator,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 11, pp. 1645–1653, Nov. 1998. • [9]D. Pain, M. Ledieu, O. Acher, A. L. Adenot, and F. Duverger, “An improved permeameter for thin film measurement up to 6 GHz,” J. Appl. Phys., vol. 85, no. 8, pp. 5151–5153, 1999. • [10]M. Yamaguchi, S. Yabukami, and K. I. Arai, “A new 1 MHz–2 GHz permeansce meter for metallic thin films,” IEEE Trans. Magn., vol. 33, no. 5, pp. 3619–3621, May 1997. • [11]P. Quéffélec, M. Le Floc’h, and P. Gelin, “Broad-band characterization of magnetic and dielectric thin films using a microstrip line,” IEEE Trans. Instrum. Meas., vol. 47, no. 4, pp. 956–963, Aug. 1998.

  26. REFERENCES • [12]P. Quéffélec, S. Mallégol, and M. Le Floc’h, “Automatic measurement of complex tensorial permeability of magnetized materials in a wide microwavefrequency range,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 9, pp. 2128–3134, Sep. 2002. • [13]C. P. Wen, “Coplanar waveguide: A surface strip transmission line suitable for nonreciprocal gyromagnetic device applications,” IEEE Trans. Microw. Theory Tech., vol. MTT-17, no. 12, pp. 1087–1090, Dec. 1969. • [14]B. Bayard, D. Vincent, C. R. Simovski, and G. Noyel, “Electromagnetic study of a ferrite coplanar isolator suitable for integration,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 7, pp. 1809–1814, Jul. 2003. • [15]D. Vincent, B. Bayard, B. Sauviac, and G. Noyel, “Optimization des performances d’un isolateur coplanaire à couche magnétique,” in Proc. J. Caractérization Microondes et Matriaux, Mar. 2002, pp. 195–198. • [16]T. Itoh and R. Mittra, “Spectral-domain approach for calculing the dispersion characteristic of microstrip lines,” IEEE Trans. Microw. Theory Tech., vol. MTT-21, no. 7, pp. 496–499, Jul. 1973.

  27. REFERENCES • [17]Y. Fukuoka, Y. Shih, and T. Itoh, “Analysis of slow-wave coplanar waveguide for monolithic integrated circuits,” IEEE Trans. Microw. Theory Tech., vol. MTT-31, no. 7, pp. 567–573, Jul. 1983. • [18]S. Clerjon, B. Bayard, D. Vincent, and G. Noyel, “X-band characterization of anisotropic magnetic materials: Application to ferrofluids,” IEEE Trans. Magn., vol. 35, no. 1, pp. 568–572, Jan. 1999. • [19]B. Bayard, J. P. Chatelon, M. Leberre, H. Joisten, J. J. Rousseau, and D. Barbier, “The effect of deposition and annealing conditions on crystallographic properties of sputtered barium ferrite thin films, ” Sensors Act.A, vol. 99, pp. 207–212, 2002.

More Related