E N D
August 8, 2013Recent Results from the RHIC Beam Energy Scan Study emergent properties of matter with QCD degrees of freedomNu Xu(1) College of Physical Science & Technology, Central China Normal University, Wuhan, 430079, China (2) Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA Many Thanks to Organizers!
Outline Introduction - The QCD phase structure and STAR physics program (2) Selected Recent Results - RHIC Beam Energy Scan-I results (3) Summary and Outlook (4) CEE – CSR-External-Target-Facility Experiment
PHOBOS BRAHMS RHIC PHENIX STAR AGS TANDEMS Relativistic Heavy Ion ColliderBrookhaven National Laboratory (BNL), Upton, NY • - RHIC: High-energy • heavy-ion collider • (i) Dedicated QCD collider • (ii) √sNN= 200 - 5 GeV • (iii) U, Pb, Au, Cu, d, p • - RHIC: The highest energy • polarized proton collider • √s= 200, 500 GeV • eRHIC: The EIC (2025) • 5 - 30GeV e + 100, 255 GeV p • 5 - 30GeV e + 5 – 100GeV A v = 0.99995c = 186,000 miles/sec Au + Au at 200 GeV Student Lecture, “Quark Matter 2006”, Shanghai, Nov. 14 - 20, 2006 Animation M. Lisa
STAR Experiment Magnet MTD BEMC TPC TOF BBC EEMC HFT FGT HLT
Particle Identification at STAR TPC TOF TPC TPC K pd π e, μ TOF Log10(p) Charged hadrons Hyperons & Hyper-nuclei MTD HFT Jets EMC Neutral particles Jets & Correlations High pTmuons Heavy-flavor hadrons Large, homogenous, collision energy independent acceptance Multiple-fold correlations for the identified particles!
QCD Phase Structure TE RHIC, SPS 2 Large μB FAIR, CSR Tini, TC LHC, RHIC 3 1 LHC+RHIC sQGP properties √sNN ~ 0.1 - 5 TeV Future eRHIC Cold nuclear matter properties e + ion collisions 1 2 3 Emergent properties of QCD matter
Phase Diagram Phase diagram: A map showsthat, at given degrees offreedom, how matterorganizeitself under externalconditions. Water: H2O The QCDPhase Diagram: structure of matter with quark- and gluon-degrees (color degrees) of freedom.
Beam Energy Scan at RHIC Study QCD Phase Structure - Signals for onset of sQGP - Signals for phase boundary - Signals for critical point Observables: 1st order phase transition (1) Azimuthally HBT (2) Directed flow v1 Partonic vs. hadronic dof (3) RAA: N.M.F. (4) Dynamical correlations (5) v2 - NCQ scaling Critical point, correl. length (6) Fluctuations (7) Di-lepton production - http://drupal.star.bnl.gov/STAR/starnotes /public/sn0493; arXiv:1007.2613 BES-I: √sNN = 7.7, 11.5, 19.6, 27, 39GeV
STAR Hadron Spectra √sNN = 39 GeV Au+Au Collisions p+ STAR Preliminary K0s K+ p L X- W-
(1) Bulk Properties at Freeze-out Cleymans, Redlich • Kinetic Freeze-out: • Central collisions => lower value of • Tkinand larger collectivity β • Stronger collectivity at higher energy • STAR: S. Das, L. Kumar, QM2012 Chemical Freeze-out: (GCE) - Central collisions => higher values of Tch and μB! - The effect is stronger at lower energy.
(2) v1: Directed Flow B. Schaefer et al., Phys. Rev. D75, (2007) 085015 (1) Lattice QCD calculations predict a first order phase transition seen, as a discontinuity in the density (2) Slope of v1: manifestation of early pressure in the system (3) Soft point?
(3) BES Dependence of RAA Suppression of high pT hadrons is one of the key signatures for the formation of strongly interaction Quark-Gluon Plasma in high-energy nuclear collisions The suppression was not observed in low energy Au+Au collisions, especially for √sNN ≤ 11.5GeV
L or B (4) Search for Local Parity Violation in High Energy Nuclear Collisions The separation between the same-charge and opposite-charge correlations. - Strong external EM field - De-confinement and Chiral symmetry restoration AAA AA • Parity-even observable, assumptions must be tested • Energy dependence & UU collisions • - S. Voloshin, PRC62, 044901(00). - STAR: PR103, 251601; PRC81, 054908(2009)
Dynamical Correlations STAR Preliminary SS - OS Below √sNN= 11.5 GeV, the splitting between the same- and opposite-sign charge pairs (SS-OS) disappear If QGP is the source for the observed splitting at high-energy nuclear collisions hadronic interactions become dominant at √sNN ≤ 11.5 GeV
(5) NCQ Scaling in v2 • m ~ mp ~ 1 GeV • ssφnot K+K-φ • h<< p, • In the hadronic case, no number • of quark scaling and the value of • v2ofφ will be small. • * Thermalization is assumed!
Collectivity v2 Measurements STAR: Phys. Rev. Lett. 110 (2013) 142301 Number of constituent quark (NCQ) scaling in v2 => partonic collectivity => deconfinement in high-energy nuclear collisions At √sNN< 11.5 GeV, the v2 NCQ scaling is broken indicating hadronic interactions become dominant.
RHIC BES-I Highlights (1) Parton energy loss (2) “Local Parity Violation” (3) Partonic collectivity STAR Preliminary sQGP key signatures turned off at √sNN < 11.5 GeV!
(6) Higher Moments 1) High moments for conserved quantum numbers: Q, S, B, in high-energy nuclear collisions 2) Sensitive to critical point (ξ correlation length): 3) Direct comparison with Lattice results: Extract susceptibilities and freeze-out temperature. An independent/important test on thermal equilibrium in heavy ion collisions. References: - A. Bazavov et al. 1208.1220 (NLOTE) // STAR:PRL105, 22303(2010) // M. Stephanov: PRL102, 032301(2009) // R.V. Gavai and S. Gupta, PLB696, 459(2011) // S. Gupta, et al., Science, 332, 1525(2011) // F. Karsch et al, PLB695, 136(2011) // S.Ejirietal, PLB633, 275(06) // M. Cheng et al, PRD79, 074505(2009) // Y. Hatta, et al, PRL91, 102003(2003)
Net-proton Higher Moments BES-II RHIC BES-I STAR net-proton results: All data show deviations below Poisson beyond statistical and systematic errors in the 0-5% most central collisions for κσ2 and Sσ at all energies. Larger deviation at √sNN ~ 20GeV. UrQMD model show monotonic behavior in the moment products. Higher statistics needed for collisions at √sNN< 20 GeV. - STAR: X.F. Luo, QM2012 STAR Preliminary
Summary RHIC BES-I Results: - Partonic QGP dominant: √sNN >39GeV Hadronic interactions become dominant: √sNN ≤11.5GeV BES-II: - High statistics data for energy region √sNN ≤ 20GeV. The e-cooling at RHIC has started. RHIC:Unique opportunities for exploring QCD phase structure
Exploring the QCD Phase Structure TE RHIC, SPS 2 Large μB FAIR, CSR Tini, TC LHC, RHIC 3 1 LHC+RHIC sQGP properties √sNN ~ 0.1 - 5 TeV Future eRHIC Cold nuclear matter properties e + ion collisions 1 2 3 Partonic Matter Hadronic Matter RHIC BES-II QCD phase structure and critical point √sNN ≤ 20 GeV Emergent properties of QCD matter
STAR: Upgrade Plan ( - 2025) - HF-II: B, ΛC - Jet, gamma CNM, spin • HF-I: Charm • Di-lepton • sQGP properties - QCD phase structure - Critical Point - CNM, CGC - Phase structure with glue HF, (e,μ) BESII HF’, pA HFT/MTD eSTAR e-Cooling, iTPC HFT’, Tracking, EM/HCAL (West side) EMCAL (East side) physics upgrade
高能核核碰撞中的QCD相结构示意图 TE RHIC, SPS 2 Large μB FAIR, CSR Tini, TC LHC, RHIC 3 1 CEE 兰州重离子加速器 低温高密核物质测量谱仪 低温、高重子密度 强子相互作用 手征对称自发破缺 对称能Esym() 1 2 3 早期宇宙 发展演化 Partonic Matter Hadronic Matter Quarkyonic matter? 部分子物质 (QGP) 强关联的核物质 重子化学势 强子物质 CEE – CSR-External-Target-Facility Experiment
N SFC: 10 AMeV (H.I.), 17~35 MeV (p) SSC: 100 AMeV (H.I.), 110 MeV (p) CSRm: 1000 AMeV (H.I.), 2.8 GeV (p) SSC SFC CSRe RIBLL2 RIBLL1 CSRm RIBLL1: 几十AMeV RIBs RIBLL2: 百AMeVRIBs CSRm: 冷却储存环 HIRFL-CSR 重离子加速器 外靶实验 装置(CEE)
CEE 概念性设计 二极磁铁 飞行时间探测器 多丝漂移室 • 微像素 • 定位探测器 靶 零度角量能器 重离子束 T0探测器 时间投影室 • 内飞行时间探测器 低温高密核物质测量谱仪(CEE) • 技术亮点: 1) 硅像素定位探测器 (华中师范大学) • 2) 高计数率高精度飞行时间探测器 (清华大学、中国科学技术大学) • 3) 高精度三维径迹探测器TPC (中科院上海应用物理所) • 4) 新型数据获取系统(中国科学技术大学)
(CEE) 总结 利用当前最新技术在中国大型重离子加速器HIRFL-CSR(HIAF)上建设性能先进的多功能中高能重离子物理实验谱仪: -三年完成基本实验设备建设 -高重子密度下的QCD相结构, 对称能高密行为, … 2)在中高能核物理领域建立一支由高校-中科院研究所密切结合的优秀科研团队 3)为国家中长期高能核物理规划, 核探测技术发展及其应用做贡献 哈尔宾工业大学,华中师范大学,山东大学,清华大学,中国科学技术大学, 中国科学院近代物理所,中国科学院上海应用物理所