1.16k likes | 1.31k Views
Metody opisu dyfuzji wielu składników, unifikacja metody dyfuzji wzajemnej i termodynamiki procesów nieodwracalnych Marek Danielewski. Interdisciplinary Centre for Materials Modeling AGH Univ. o f Sci. & Technolog y , Cracow, Poland Będlewo, Czerwiec 2013. φ. φ. Quantum mechanics:.
E N D
Metody opisu dyfuzji wielu składników, unifikacja metody dyfuzji wzajemnej i termodynamiki procesów nieodwracalnych Marek Danielewski Interdisciplinary Centre for Materials Modeling AGH Univ. of Sci. & Technology, Cracow, Poland Będlewo, Czerwiec 2013
φ φ Quantum mechanics:
Quantum mechanics: free particle…
Question: Why Answer… P-K-C hypothesis
Economy… … diffusion equation
The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 1997: "for a new method to determine… the value of derivatives" Myron S. Scholes Long Term Capital Management Greenwich, CT, USA Robert C. Merton Harvard University
But…. money is not conserved!!! Merton & Sholes Nobel price „helped in”… …grand failure in 2008!!! Economy & diffusion…
< 10-35 - ??? Planck scale- 10-35 nucleus - 10-16 atoms - 10-10 biology - 10-4 mechanics - 1, Earth - 107 cosmology – 1027 > 1030 ???
Walther Hermann NERNST 1864-1941 Max PLANCK 1858-1947 Siméon Denis POISSON 1781 -1840 Nernst-Planck-Poisson Problem
Siméon Denis POISSON 1781 -1840 Walther Hermann NERNST 1864-1941 Max PLANCK 1858-1947 Nernst-Planck-Poisson Problem Unsolved: uniqueness, quasi-stationary Problems, multi-component ionic systems… Unsolved: NPP + drift… W. Kucza (2009): converge…
Bi-velocity: Wagner (1933),Darken (1948), Danielewski & Holly (Cracow >1994)... Show…
?? R1…. No stress… Ωi =Ω = const.
Material reference frame (Darken: 1948); Lagrange, substantial, material etc…derivative
Internal reference frame (Darken 1948): Lagrange, substantial, material… derivative
local volume velocity: None of them!!!
If not: Then?
Vegard law ? EOS ?
We need different approach… Darken!!!
19th century: Cauchy, Navier, Lamé… Cracow (1994): vd & drift Stephenson (1988):drift &m up to 2007: only m Öttinger (2005): „something is missing” Brenner (2006): Fluid Mechanics Revisited…
Brenner in „Fluid Mechanics Revisited” (Physica A, 2006) 1. Complemented: volume fixed RF 2. Was polite to not notice: conflict between RF’s … in our papers
150 years of diffusion equation: Diffusion velocity… (~1900 Nernst & Planck) Defects „everywhere & always”… (1918 Frenkel) Nonstoichiometry is a rule… (1933 Schottky & Wagner) Lattice sites are not conserved (1948 Kirkendall & Darken) Darken problem has a unique solution (2008 Holly, Danielewski & Krzyżański) Darken problem is self-consistent with LIT (ActaMat 2010, Danielewski & Wierzba)
150 years of diffusion: Number of laws decreases… Complexity increases… Do we „stay with”: m, ρυ, q, U only ?
Dynamics & diffusion? Does xmdepend on time, i.e.,xm(t) or xm= const?
… fundamentals only! Hopeless?
Euler’s theorem: f(x1, , xr;…) is called homogeneous of the m-th degree in the variables x1,…, xr if: several identities follow, e.g.:
The molar volume is the nonconserved property But… is transported bycomponents velocity field.
Fundamentals II The Liouville transport theorem: fi is a sufficiently smooth function(e.g., have first derivative, C1) andυi is defined on fi
Liouville: Conservation of component (fi = ci)
The Liouville theorem & the Volume Continuity, fi(t,x) =„volume density” = ci(t,x) Ωi(t,x)
The volume density conservation law or… equation ofvolume continuity at constant volume: