1 / 8

Zahlenformate

Zahlenformate. Dezimalzahlen. Basis = 10 (n k-1 n k-2 ...n 1 n 0 ) 10 = n k-1 • 10 k-1 + n k-2 • 10 k-2 + ... + n 1 • 10 + n 0 wobei 0 <= n i < 10 z.B.: 2345 10 = 2 • 10 3 + 3 • 10 2 + 4 • 10 + 5 = 2 • 1000 + 3 • 100 + 4 • 10 + 5 = 2000 + 300 + 40 + 5. Binärzahlen. Basis = 2

Download Presentation

Zahlenformate

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Zahlenformate DVG1 - Zahlenformate

  2. Dezimalzahlen Basis = 10 (nk-1nk-2...n1n0)10 = nk-1 •10 k-1 + nk-2 •10 k-2 + ... + n1 •10 + n0 wobei 0 <= ni < 10 z.B.: 234510 = 2 • 10 3 + 3 • 10 2 + 4 • 10 + 5 = 2 • 1000 + 3 • 100+ 4 • 10 + 5 = 2000 + 300 + 40 + 5 DVG1 - Zahlenformate

  3. Binärzahlen Basis = 2 (nk-1nk-2...n1n0)2 = nk-1 •2 k-1 + nk-2 •2 k-2 + ... + n1 •2 + n0 wobei 0 <= ni < 2 z.B.: 1001012 = 1 • 2 5 + 0 • 2 4 + 0 • 2 3 + 1 • 2 2 + 0 • 2 + 1 = 1 • 32+ 0 • 16+ 0 • 8+ 1 • 4+ 0 • 2 + 1 = 32 + 4 + 1 = 3710 DVG1 - Zahlenformate

  4. Dezimalzahl ==> Binärzahl Gesucht Binärdarstellung einer Dezimalzahl D: D = nk-1 •2 k-1 + nk-2 •2 k-2 + ... + n1 •2 + n0 = (...((nk-1 •2 + nk-2 ) •2 + nk-3 ) •2 +...+ n1 ) •2 + n0 0 <= ni < 2 z.B.: 3910 = 19 •2 + 1 = (9 •2 + 1 ) •2 + 1 = ((4 •2 + 1 ) •2 + 1 ) •2 + 1 = (((2 •2 + 0 ) •2 + 1 ) •2 + 1 ) •2 + 1 = ((((1 •2 + 0 ) •2 + 0 ) •2 + 1 ) •2 + 1 ) •2 + 1 = 1001112 DVG1 - Zahlenformate

  5. Oktalzahlen Basis = 8 (nk-1nk-2...n1n0)8 = nk-1 •8 k-1 + nk-2 •8 k-2 + ... + n1 •8 + n0 wobei 0 <= ni < 8 z.B.: 76548 = 7 • 8 3 + 6 • 8 2 + 5 • 8 + 4 = 7 • 512+ 6 • 64+ 5 • 8 + 4 = 3584 + 384 + 40 +4 = 401210 DVG1 - Zahlenformate

  6. Dezimalzahl ==> Oktalzahl Gesucht Oktaldarstellung einer Dezimalzahl D: D = nk-1 •8 k-1 + nk-2 •8 k-2 + ... + n1 •8 + n0 = (...((nk-1 •8 + nk-2 ) •8 + nk-3 ) •8 +...+ n1 ) •8 + n0 0 <= ni < 8 z.B.: 401210 = 501 •8 + 4 = (62 •8 + 5 ) •8 + 4 = ((7 •8 + 6 ) •8 + 5 ) •8 + 4 = 76548 DVG1 - Zahlenformate

  7. Hexadezimalzahlen Basis = 16 (nk-1nk-2...n1n0)16 = nk-1 •16 k-1 + nk-2 •16 k-2 + ... + n1 •16 + n0 wobei 0 <= ni < 16 Ziffern: 0 . . . 9 A B C D E F A=10, B=11, C=12, D=13, E=14, F=15 z.B.: FEDC16 = 15 • 16 3 + 14 • 16 2 + 13 • 16 + 12 = 15 • 4096+ 14 • 256+ 13 • 16 + 12 = 61440 + 3584 + 208 + 12 = 6524410 DVG1 - Zahlenformate

  8. Dezimalzahl ==> Hexadezimalzahl Gesucht Hexadezimaldarstellung einer Dezimalzahl D: D = nk-1 •16 k-1 + nk-2 •16 k-2 + ... + n1 •16 + n0 = (...((nk-1 •16 + nk-2 ) •16 + nk-3 ) •16 +...+ n1 ) •16 + n0 0 <= ni < 16 z.B.: 6524410 = 4077 •16 + 12 = (254 •16 + 13 ) •16 + 12 = ((15 •16 + 14 ) •16 + 13 ) •16 + 12 = FEDC16 DVG1 - Zahlenformate

More Related