450 likes | 685 Views
PVES & The New St’d Model. M.J. Ramsey-Musolf Wisconsin-Madison. NPAC. Theoretical Nuclear, Particle, Astrophysics & Cosmology. http://www.physics.wisc.edu/groups/particle-theory/. INT, November 2008. Outline. Brief Context SUSY Z’ Leptoquarks Doubly Charged Scalars
E N D
PVES & The New St’d Model M.J. Ramsey-Musolf Wisconsin-Madison NPAC Theoretical Nuclear, Particle, Astrophysics & Cosmology http://www.physics.wisc.edu/groups/particle-theory/ INT, November 2008
Outline • Brief Context • SUSY • Z’ • Leptoquarks • Doubly Charged Scalars • QWP, APV Isotope Ratios, & Box Graphs
Probing Fundamental Symmetries beyond the SM: Use precision low-energy measurements to probe virtual effects of new symmetries & compare with collider results • Precision measurements predicted a range for mt before top quark discovery • mt >> mb ! • mt is consistent with that range • It didn’t have to be that way • Precision Frontier: • Precision ~ Mass scale • Look for pattern from a variety of measurements • Identify complementarity with collider searches • Special role: SM suppressed processes Radiative corrections Direct Measurements Stunning SM Success Precision & Energy Frontiers J. Ellison, UCI
Muons • gm-2 • mA->eA Nuclei & Charged Leptons PV Electron Scattering • Q-Weak • 12 GeV Moller • PV DIS Weak Decays • n decay correlations • nuclear b decay • pion decays • muon decays
Muons Weak Decays • gm-2 • mA->eA • n decay correlations • nuclear b decay • pion decays • muon decays • Essential Role for Theory • Precise SM predictions (QCD) • Sensitivity to new physics & complementarity w/ LHC Nuclei & Charged Leptons: Theory PV Electron Scattering • Q-Weak • 12 GeV Moller • PV DIS • Substantially reduced QCD uncertainty in sin2qW running • QCD uncertainties in ep box graphs quantified • Comprehensive analysis of new physics effects
Weak Charge: Nu C1u + Nd C1d Proton: QWP = 2 C1u + C1d = 1-4 sin2W ~ 0.1 Electron: QWe = C1e = -1+4 sin2W ~ - 0.1 Effective PV e-q interaction & QW Low energy effective PV eq interaction
Flavor-dependent Large logs in Sum to all orders with running sin2W & RGE sin2 Normalization Scale-dependent effective weak mixing Constrained by Z-pole precision observables Flavor-independent QW and Radiative Corrections Tree Level Radiative Corrections
Weak Charge: Nu C1u + Nd C1d Proton: QWP = 2 C1u + C1d = 1-4 sin2W ~ 0.1 Electron: QWe = C1e = -1+4 sin2W ~ - 0.1 Effective PV e-q interaction & PVDIS Low energy effective PV eq interaction PV DIS eD asymmetry: leading twist
Like QWp,e ~ 1 - 4 sin2qW Flavor-dependent Normalization Scale-dependent effective weak mixing Constrained by Z-pole precision observables Flavor-independent C2q and Radiative Corrections Tree Level Radiative Corrections
QWP = 0.0716 QWe = 0.0449 Experiment SUSY Loops E6 Z/ boson RPV SUSY Leptoquarks SM SM New Physics: Comparing PV Observables
SUSY • MSSM • Radiative Corrections • RPV & Lepton Number Violation • LFV, Decay, & Neutrino Mass R-M & Su, Phys. Rep. 456 (2008) 1
Supersymmetry Fermions Bosons sfermions gauginos No new coupling constants Two Higgs vevs Higgsinos Supersymmetric Higgs mass, Charginos, neutralinos Minimal Supersymmetric Standard Model (MSSM)
SUSY Breaking Superpartners have not been seen Theoretical models of SUSY breaking Visible World Hidden World Flavor-blind mediation How is SUSY broken? SUSY must be a broken symmetry
Superpartners have not been seen Theoretical models of SUSY breaking Gaugino mass ~ 100 new parameters 40 new CPV phases Flavor mixing parameters Triscalar interactions One solution: af ~ Yf Sfermion mass O(1) CPV phases & flavor mixing ruled out by expt: “SUSY CP” & “SUSY flavor” problems How is SUSY broken? MSSM SUSY Breaking
If nature conserves vertices have even number of superpartners • Lightest SUSY particle is stable viable dark matter candidate • Proton is stable • Superpartners appear only in loops SUSY and R Parity Consequences
Vertex & External leg Kurylov, RM, Su SUSY Radiative Corrections Propagator Box
muon decay The parameter: Weak mixing: Can impose constraints from global fits to EWPO via S,T,U-dependence of these quantities Universal Corrections G.B. Propagators
dksusy T dmVB S Pgg+PgZ e-anapole Correlated Radiative Corrections
“Superpotential” : a convenient way to derive supersymmetric interactions by taking derivatives w.r.t. scalar fields Li, Qi SU(2)L doublets Ei, Ui, Di SU(2)L singlets R-Parity Violation (RPV) L=1 WRPV = ijk LiLjEk + ijk LiQjDk +/i LiHu + ijkUiDjDk B=1 proton decay: Set ijk =0
No SUSY DM: LSP unstable • Neutrinos are Majorana 12k 1j1 12k 1j1 L=1 L=1 Four-fermion Operators
Moller (ee) RPV: No SUSY DM Majorana n s SUSY Loops Q-Weak (ep) d QWP, SUSY / QWP, SM d QWe, SUSY / QWe, SM Hyrodgen APV or isotope ratios gm-2 12 GeV 6 GeV E158 Global fit: MW, APV, CKM, l2,… Kurylov, RM, Su PVES & APV Probes of SUSY
e RPV Loops p Comparing AdDIS and Qwp,e
Present universe Early universe ? ? Bm->e R = Bm->eg Weak scale Planck scale Lepton Flavor & Number Violation MEG: Bm->eg ~ 5 x 10-14 Mu2e: Bm->e ~ 5 x 10-17 Also PRIME
0nbb decay Light nM exchange ? m->eg m->e LFV Probes of RPV: LFV Probes of RPV: Heavy particle exchange ? lk11/ ~ 0.09 for mSUSY ~ 1 TeV lk11/ ~ 0.008 for mSUSY ~ 1 TeV Low scale LFV: R ~ O(1) GUT scale LFV: R ~ O(a) Lepton Flavor & Number Violation Raidal, Santamaria; Cirigliano, Kurylov, R-M, Vogel MEG: Bm->eg ~ 5 x 10-14 Logarithmic enhancements of R Mu2e: Bm->e ~ 5 x 10-17
0nbb signal equivalent to degenerate hierarchy l111/ ~ 0.06 for mSUSY ~ 1 TeV Loop contribution to mn of inverted hierarchy scale Lepton Flavor & Number Violation
0nbb sensitivity m LNV Probes of RPV: l111/ ~ 0.06 for mSUSY ~ 1 TeV lk31 ~ 0.02 for mSUSY ~ 1 TeV m->eg m->e LFV Probes of RPV: LFV Probes of RPV: l12k ~ 0.3 for mSUSY ~ 1 TeV & dQWe/ QWe ~ 5% lk31 ~ 0.03 for mSUSY ~ 1 TeV lk31 ~ 0.15 for mSUSY ~ 1 TeV PVES Probes of RPV SUSY
New Z Bosons • E6 Paradigm • PVES Sensitivity • LHC Probes (Petriello & Quackenbush) • PV Moller vs LHC • Erler & R-M, Prog. Nuc. Part. Phys. 54 (2005) 351 • R-M, Phys. Rev. C60 (1999) 015501 • Petriello & Quackenbush (in prog)
Probing Z’ with PVES Heterotic string motivated Z’
Probing Z’ with PVES PV Sensitivities
Probing Z’ with PVES: Kinetic Mixing Erler & Langacker PRL 84:212 (2000) PV Sensitivities 1 90% CL
Probing Z’ : PVES & LHC Petriello & Quackenbush
Probing Z’ : PVES & LHC Petriello & Quackenbush
Probing Z’ : PVES & LHC Petriello & Quackenbush
Probing Z’ : PVES & LHC Petriello & Quackenbush
Leptoquarks: “Last Resort” • General Classification • PVES Sensitivity • GUT Example: LQ’s & m • LHC & Low Energy Probes • R-M, Phys. Rev. C60 (1999) 015501 • Erler, Kurylov, R-M, Phys Rev. D68 (2003) 034016 • Fileviez Perez, Han, Li, R-M, 0810.4238
SU(5) GUT: m, prot LQ 2 15H Dorsner & Fileviez Perez, NPB 723 (2005) 53 Fileviez Perez, Han, Li, R-M 0810.4238 Probing Leptoquarks with PVES General classification: SU(3)C xSU(2)L x U(1)Y Q-Weak sensitivities:
Probing Leptoquarks with PVES SU(5) GUT: mvia type II see saw LQ 2 15H Fileviez Perez, Han, Li, R-M 0810.4238
4% QWp (MLQ=100 GeV) Probing Leptoquarks with PVES PV Sensitivities Fileviez Perez, Han, Li, R-M 0810.4238
LHC & Low Energy Probes LQ & backgrounds Flavor tagging & hierarchy Fileviez Perez, Han, Li, R-M 0810.4238
LHC & Low Energy Probes Rare Processes Leading channel Fileviez Perez, Han, Li, R-M 0810.4238
Lepton Number Violation • Doubly Charged Scalars: LRSM & SU(5) • Moller Sensitivity • Decay
++ (also LRSM) Decay PV Moller hee hee PVES & Decay See saw & doubly charged Higgs
Conclusions PVES & APV are key tools in the search for the new Standard Model at the precision frontier • SUSY • Z’ • Leptoquarks • Doubly Charged Scalars Important to compare results from a variety of experiments and continue to push the state of the art (theory & expt) in the LHC era