1 / 34

Chapter 7

Chapter 7. Technology and Production. 1. Production Technologies. Firms produce products or services, outputs they can sell profitably A firm’s production technology summarizes all its production methods for producing its output

mercury
Download Presentation

Chapter 7

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 7 Technology and Production 1

  2. Production Technologies • Firms produce products or services, outputs they can sell profitably • A firm’s production technology summarizes all its production methods for producing its output • Different production methods can use the same amounts of inputs but produce different amounts of output • A production method is efficient if there is no other way for the firm to produce more output using the same amounts of inputs 2

  3. Production Technologies:An Example • Firm producing garden benches: • One worker produces 33 benches in a week • Two workers can produce different numbers of benches in a week, depending on how they divide up the assembly tasks 3

  4. Production Technologies: An Example

  5. Production Possibilities Set • A production possibilities set contains all combinations of inputs and outputs that are possible given the firm’s technology • A firm’s efficient production frontier shows the input-output combinations from all of its efficient production methods • Corresponds to the highest point in the production possibilities set on the vertical line at a given input level 5

  6. Figure 7.2: Production Possibility Set for Garden Benches

  7. Production Function • Mathematically, describe efficient production frontier with a production function • Output=F(Inputs) • Example: Q=F(L)=10L • Q is quantity of output, L is quantity of labor • Substitute different amounts of L to see how output changes as the firm hires different amounts of labor • Amount of output never falls when the amount of input increases • Production function shows output produced for efficient production methods 7

  8. Short and Long-Run Production • An input is fixed if it cannot be adjusted over any given time period; it is variable if it can be • Short run: a stage where one or more inputs is fixed • Long run: a stage where all inputs are variable • production process not time • Auto manufacturer may need years to build a new production facility but software firm may need only a month or two to rent and move into a new space 8

  9. Average and Marginal Products • Average product of labor is the amount of output that is produced per worker: • Marginal product of labor measures how much extra output is produced when the firm changes the amount of labor it uses by just a little bit: 9

  10. Diminishing Marginal Returns • Law of diminishing marginal returns: eventually the marginal product for an input decreases as its use increases, holding all other inputs fixed

  11. Relationship Between AP and MP • Compare MP to AP to see whether AP rises or falls as more of an input is added • MPL shows how much output the marginal worker adds • If he is more productive than average, he brings the average up • If he is less productive than average, he drives the average down 11

  12. AP and MP Curves • For any point on a short run production function: • AP is the slope of the straight line connecting the point to the origin • MP equals the slope of the line tangent to the production function at that point 12

  13. Figure 7.4: Marginal Product of Labor

  14. Figure 7.6: Average and Marginal Product Curves • AP curve slopes upward when it is below MP • AP slopes downward when it is above MP • AP is flat where the two curve cross

  15. Production with Two Variable Inputs • Most production processes use many variable inputs: labor, capital, materials, and land • Consider a firm that uses two inputs in the long run: • Labor (L) and capital (K) • Each of these inputs is homogeneous • Firm’s production function is Q = F(L,K) 15

  16. Production with Two Variable Inputs • When a firm has more than one variable input it can produce a given amount of output with many different combinations of inputs • E.g., by substituting K for L • Productive Inputs Principle: Increasing the amounts of all inputs strictly increases the amount of output the firm can produce 16

  17. Isoquants • An isoquant identifies all input combinations that efficiently produce a given level of output • Firm’s family of isoquants consists of the isoquants for all of its possible output levels 17

  18. Figure 7.8: Isoquant Example

  19. Properties of Isoquants • Isoquants are thin • Do not slope upward • The boundary between input combinations that produce more and less than a given amount of output • Isoquants from the same technology do not cross • Higher-level isoquants lie farther from the origin 19

  20. Figure 7.10: Properties of Isoquants

  21. Figure 7.10: Properties of Isoquants

  22. Substitution Between Inputs • Rate that one input can be substituted for another is an important factor for managers in choosing best mix of inputs • Shape of isoquant captures information about input substitution • Points on an isoquant have same output but different input mix • Rate of substitution for labor with capital is equal to negative the slope • Marginal Rate of Technical Substitution for input X with input Y: the rate as which a firm must replace units of X with units of Y to keep output unchanged starting at a given input combination 22

  23. Figure 7.12: MRTS

  24. MRTS and Marginal Product • Recall the relationship between MRS and marginal utility • Parallel relationship exists between MRTS and marginal product • The more productive labor is relative to capital, the more capital we must add to make up for any reduction in labor; the larger the MRTS 24

  25. Figure 7.13: Declining MRTS • Often assume declining MRTS • Here MRTS declines as we move along the isoquant, increasing input X and decreasing input Y

  26. Extreme Production Technologies • Two inputs are perfect substitutes if their functions are identical • Firm is able to exchange one for another at a fixed rate • Each isoquant is a straight line, constant MRTS • Two inputs are perfect complements when • They must be used in fixed proportions • Isoquants are L-shaped 26

  27. Figure 7.14: Perfect Substitutes

  28. Figure 7.15: Fixed Proportions

  29. Cobb-Douglas Production Function • Common production function in economic analysis • Introduced by mathematician Charles Cobb and economist (U.S. Senator) Paul Douglas • General form: • Where A, α, and  are parameters that take specific values for a given firm 29

  30. Cobb-Douglas Production Function • A shows firm’s general productivity level • α and  affect relative productivities of labor and capital • Substitution between inputs: 30

  31. Figure: 7.16: Cobb-Douglas Production Function

  32. Returns to Scale

  33. Figure 7.17: Returns to Scale

  34. Productivity Differences and Technological Change • A firm is more productive or has higher productivity when it can produce more output use the same amount of inputs • Its production function shifts upward at each combination of inputs • May be either general change in productivity of specifically linked to use of one input • Productivity improvement that leaves MRTS unchanged is factor-neutral 34

More Related