1 / 23

Raoul LePage Professor STATISTICS AND PROBABILITY stt.msu/~lepage click on STT315_Sp06

Raoul LePage Professor STATISTICS AND PROBABILITY www.stt.msu.edu/~lepage click on STT315_Sp06. Week 3. suggested exercises solutions given in text 3-33, 3-41, 3-42 (except b, c, h, m, n), 3-43, 3-49, 3-57 (except c, d), 3-59, 3-61, 3-63, 3-65. textbook exercises are not

meris
Download Presentation

Raoul LePage Professor STATISTICS AND PROBABILITY stt.msu/~lepage click on STT315_Sp06

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Raoul LePage Professor STATISTICS AND PROBABILITY www.stt.msu.edu/~lepage click on STT315_Sp06 Week 3.

  2. suggested exercises solutions given in text 3-33, 3-41, 3-42 (except b, c, h, m, n), 3-43, 3-49, 3-57 (except c, d), 3-59, 3-61, 3-63, 3-65. textbook exercises are not comprehensive this chapter Week 3.

  3. NORMAL DISTRIBUTIONBERNOULLI TRIALSBINOMIAL DISTRIBUTIONEXPONENTIAL DISTRIBUTIONUNIFORM DISTRIBUTIONPOISSON DISTRIBUTION PROBABILITY MODELS HAVING BROAD APPLICATION

  4. NORMAL DISTRIBUTION: WHERE ARE THE MEAN AND STANDARD DEVIATION IN THIS PICTURE? note the point of inflexion note the balance point

  5. IQ DISTRIBUTION: ~NORMAL, MEAN 100 STANDARD DEVIATION 15 point of inflexion SD=15 MEAN = 100

  6. DISTRIBUTION OF THE NUMBER OF HEADS IN 100 COIN TOSSES: APPROXIMATELY NORMAL, MEAN 50, STD DEVIATION 5 5 50

  7. DISTRIBUTION OF THE NUMBER OF ACCIDENTS IN ONE MONTH IF WE AVERAGE 39.7 PER MONTH: APPROXIMATELY NORMAL, MEAN 39.7, STD DEVIATION 6.3 6.3 39.7

  8. NORMAL DISTRIBUTIONS ARE ALIKE IN SD UNITS FROM THE MEAN ~ 68% WITHIN 1 SD OF MEAN ~ 95% WITHIN 2 SD OF MEAN Illustrated for the Standard Normal Mean=0, SD=1 ~68%

  9. NORMAL DISTRIBUTIONS ARE ALIKE IN SD UNITS FROM THE MEAN ~ 68% WITHIN 1 SD OF MEAN ~ 95% WITHIN 2 SD OF MEAN Illustrated for the Standard normal Mean=0, SD=1 ~95%

  10. IQ DISTRIBUTION: ~NORMAL, MEAN 100 STANDARD DEVIATION 15 15 ~68/2 =34% ~95/2=47.5% 130 85 100

  11. IQ DISTRIBUTION: ~NORMAL, MEAN 100 STANDARD DEVIATION 15 15 ~68/2 =34% ~95/2=47.5% 130 85 100

  12. STANDARD SCORES CONVERT TO 0 MEAN; SD 1 IQ Z 1 15 0 Standard Normal 100

  13. STANDARD SCORES CONVERT TO 0 MEAN; SD 1

  14. Z - TABLE CUT AND PASTE P(Z > 0) = P(Z < 0 ) = 0.5 P(Z > 2.66) = 0.5 - P(0 < Z < 2.66) = 0.5 - 0.4961 = 0.0039 P(Z < 1.92) = 0.5 + P(0 < Z < 1.92) = 0.5 + 0.4726 = 0.9726

  15. BERNOULLI DISTRIBUTION x p(x) p (1 denotes “success”) 0 q (0 denotes “failure”) __ 1 0 < p < 1 q = 1 - p

  16. Notation: BERNOULLI RANDOM VARIABLE X P(success) = P(X = 1) = p P(failure) = P(X = 0) = q e.g. X = “sample voter is Democrat” Population has 48% Dem. p = 0.48, q = 0.52 P(X = 1) = 0.48

  17. INDEPENDENT BERNOULLI-p "S" denotes success "F" denotes failure P(S1 S2 F3 F4 F5 F6 S7) = p3 q4 just write P(SSFFFFS) = p3 q4 “the answer only depends upon how many of each, not their order.” e.g. 48% Dem, 5 sampled, with-repl: P(Dem Rep Dem Dem Rep) = 0.483 0.522

  18. BINOMIAL DISTRIBUTION FOR THE TOTAL NUMBER OF SUCCESSES IN INDEPENDENT p-BERNOULLI TRIALS. e.g. P(exactly 2 Dems out of sample of 4) = P(DDRR) + P(DRDR) + P(DDRR) + P(RDDR) + P(RDRD) + P(RRDD) = 6 .482 0.522 ~ 0.374. There are 6 ways to arrange 2D 2R.

  19. BINOMIAL DISTRIBUTION FOR THE TOTAL NUMBER OF SUCCESSES IN INDEPENDENT p-BERNOULLI TRIALS. e.g. P(exactly 3 Dems out of sample of 5) = P(DDDRR) + P(DDRDR) + P(DDRRD) + P(DRDDR) + P(DRDRD) + P(DRRDD) + P(RDDDR) +P(RDDRD) + P(RDRDD) + P(RRDDD) = 10 .483 0.522 ~ 0.299. There are 10 ways to arrange 3D 2R. Same as the number of ways to select 3 from 5.

  20. COUNTING ARRANGEMENTS 5! ways to arrange 5 things in a line Do it thus (1:1 with arrangements): select 3 of the 5 to go first in line, arrange those 3 at the head of line then arrange the remaining 2 after. 5! = (ways to select 3 from 5) 3! 2! So num ways must be 5! /( 3! 2!) = 10.

  21. BINOMIAL FORMULA Let random variable X denote the number of “S” in n independent Bernoulli p-Trials. By definition, X has a Binomial Distribution and for each of x = 0, 1, 2, …, n P(X = x) = (n!/(x! (n-x)!) ) px qn-x e.g. P(44 Dems in sample of 100 voters) = (100!/(44! 56!)) 0.4844 0.52100-44 = 0.05812.

  22. Caveats: Binomial n!/(x! (n-x)!) is the count of how many arrangments there are of a string of x letters “S” and n-x letters “F.” . px qn-x is the shared probability of each string of x letters “S” and n-x letters “F.” (define 0! = 1, p0 = q0 = 1 and the formula goes through for every one of x = 0 through n) is short for the arrangement count = Binomial Coefficient

More Related