390 likes | 528 Views
Graph Sparsifiers : A Survey. Based on work by: Batson, Benczur , de Carli Silva, Fung, Hariharan , Harvey, Karger , Panigrahi , Sato, Spielman , Srivastava and Teng. Nick Harvey. Approximating Dense Objects by Sparse Ones. Floor joists Image compression.
E N D
Graph Sparsifiers: A Survey Based on work by: Batson, Benczur, de Carli Silva, Fung, Hariharan, Harvey, Karger, Panigrahi, Sato, Spielman, Srivastava and Teng Nick Harvey
Approximating Dense Objects by Sparse Ones • Floor joists • Image compression
Approximating Dense Graphsby Sparse Ones • Spanners: Approximate distances to within ®using only = O(n1+2/®) edges • Low-stretch trees: Approximate most distancesto within O(log n) using only n-1 edges (n = # vertices)
Overview • Definitions • Cut & Spectral Sparsifiers • Cut Sparsifiers • A combinatorial construction • Spectral Sparsifiers • A random sampling construction • Derandomization
(Karger ‘94) Cut Sparsifiers • Input: An undirected graph G=(V,E) with weights u : E !R+ • Output: A subgraph H=(V,F) of G with weightsw : F!R+ such that |F| is small and w(±H(U)) = (1§²) u(±G(U)) 8Uµ V weight of edges between U and V\U in H weight of edges between U and V\U in G U U
Cut Sparsifiers • Input: An undirected graph G=(V,E) with weights u : E !R+ • Output: A subgraph H=(V,F) of G with weightsw : F!R such that |F| is small and w(±H(U)) = (1§²) u(±G(U)) 8Uµ V weight of edges between U and V\U in H weight of edges between U and V\U in G
Generic Applicationof Cut Sparsifiers (Slow) Algorithm A for some problem P (Dense) Input graph G Exact/Approx Output Min s-t cut, Sparsest cut,Max cut, … (Efficient) Sparsification Algorithm S Algorithm A(now faster) Sparse graph H approx preserving solution of P Approximate Output
Relation to Expander Graphs • Graph H on V is an expander if, for some constant c,|±H(U)| ¸c¢ |U| 8Uµ V, |U|·n/2 • Let G be the complete graph on V. Note that|±G(U)| = |U|¢|VnU| · n¢|U| • If we give all edges of H weight w=n, thenw(±H(U)) ¸ c¢|±G(U)| 8Uµ V, |U|·n/2 • Expanders are similar to sparsifiers of complete graph G H
Relation to Expander Graphs • Fact: Pick a random graph where each edge appears independently with probability p=(log(n)/n). Gives an expander with O(n log n) edges with high probability. G H
(Spielman-Teng ‘04) Spectral Sparsifiers • Input: An undirected graph G=(V,E) withweights u : E !R+ • Def: The Laplacianis the matrix LG such thatxTLGx = st2Eust (xs-xt)28x2RV. • LG is positive semidefinite since this is ¸ 0. • Example: Electrical Networks • View edge st as resistor of resistance 1/ust. • Impose voltage xv at every vertex v. • Ohm’s Power Law: P = V2/R. • Power consumed on edge st is ust (xs-xt)2. • Total power consumed is xTLGx.
(Spielman-Teng ‘04) Spectral Sparsifiers • Input: An undirected graph G=(V,E) withweights u : E !R+ • Def: The Laplacianis the matrix LG such thatxTLGx = st2Eust (xs-xt)28x2RV. • Output: A subgraphH=(V,F) of G with weightsw : F!R such that |F| is small and xTLHx = (1 §²) xTLGx8x2RV w(±H(U)) = (1 § ²) u(±G(U)) 8Uµ V SpectralSparsifier ) ) CutSparsifier
Cut vs Spectral Sparsifiers • Number of Constraints: • Cut: w(±H(U)) = (1§²) u(±G(U)) 8UµV (2n constraints) • Spectral: xTLHx = (1§²) xTLGx8x2RV (1 constraints) • Spectral constraints are SDP feasibility constraints: (1-²) xTLGx· xTLHx· (1+²) xTLGx8x2RV , (1-²) LG¹LH¹ (1+²) LG • Spectral constraints are actually easier to handle • Checking “Is H is a spectral sparsifier of G?” is in P • Checking “Is H is a cut sparsifier of G?” isnon-uniform sparsest cut, so NP-hard Here X ¹ Y means Y-X is positive semidefinite
Application of Spectral Sparsifiers • Consider the linear system LGx = b.Actual solution is x := LG-1 b. • Instead, compute y := LH-1b,where H is a spectral sparsifier of G. • We know: (1-²) LG¹LH¹(1+²) LG )y has low multiplicative error: ky-xkLG·2²kxkLG • Computing y is fast since H is sparse:conjugate gradient method takes O(n|F|) time (where |F| = # nonzero entries of LH)
Application of Spectral Sparsifiers • Consider the linear system LGx = b.Actual solution is x := LG-1 b. • Instead, compute y := LH-1b,where H is a spectral sparsifier of G. • We know: (1-²) LG¹LH¹(1+²) LG )y has low multiplicative error: ky-xkLG·2²kxkLG • Theorem:[Spielman-Teng ‘04, Koutis-Miller-Peng ‘10]Can compute avector y with low multiplicative error in O(m log n (log log n)2) time. (m = # edges of G)
Results on Sparsifiers Cut Sparsifiers Spectral Sparsifiers Karger ‘94 Benczur-Karger ‘96 Combinatorial Fung-Hariharan-Harvey-Panigrahi ‘11 Spielman-Teng ‘04 Spielman-Srivastava ‘08 Linear Algebraic Batson-Spielman-Srivastava ‘09 de Carli Silva-Harvey-Sato ‘11 These construct sparsifiers with n logO(1) n / ²2 edges These construct sparsifiers with O(n / ²2) edges
Sparsifiers by Random Sampling • The complete graph is easy!Random sampling gives an expander (ie. sparsifier) with O(n log n) edges.
Sparsifiers by Random Sampling Eliminate most of these • Can’t sample edges with same probability! • Idea [BK’96]Sample low-connectivity edges with high probability, and high-connectivity edges with low probability Keep this
Non-uniform sampling algorithm [BK’96] • Input: Graph G=(V,E), weights u : E !R+ • Output: A subgraph H=(V,F) with weights w : F !R+ • Choose parameter ½ • Compute probabilities { pe:e2E} • For i=1 to ½ • For each edge e2E • With probability pe, Add e to F Increase we by ue/(½pe) Can we dothis so that thecut values aretightly concentratedand E[|F|]=nlogO(1)n? • Note: E[|F|] ·½¢epe • Note: E[ we ] = ue8e2E • ) For every UµV, E[ w(±H(U)) ] = u(±G(U))
Benczur-Karger ‘96 • Input: Graph G=(V,E), weights u : E !R+ • Output: A subgraph H=(V,F) with weights w : F !R+ • Choose parameter ½ • Compute probabilities { pe:e2E} • For i=1 to ½ • For each edge e2E • With probability pe, Add e to F Increase we by ue/(½pe) Can we dothis so that thecut values aretightly concentratedand E[|F|]=nlogO(1)n? Can approximateall values in m logO(1)n time. • Set ½ = O(logn/²2). • Let pe = 1/“strength” of edge e. • Cuts are preserved to within (1§²) and E[|F|] = O(n logn/²2)
Fung-Hariharan-Harvey-Panigrahi ‘11 • Input: Graph G=(V,E), weights u : E !R+ • Output: A subgraph H=(V,F) with weights w : F !R+ • Choose parameter ½ • Compute probabilities { pe:e2E} • For i=1 to ½ • For each edge e2E • With probability pe, Add e to F Increase we by ue/(½pe) Can we dothis so that thecut values aretightly concentratedand E[|F|]=nlogO(1)n? Can approximateall values in O(m + n log n) time • Set ½ = O(log2n/²2). • Let pst = 1/(min cut separating s and t) • Cuts are preserved to within (1§²) and E[|F|] = O(n log2n/²2)
Letkuv = min size of a cut separating u and v.Recall sampling probability is pe = 1/ke • Partition edges into connectivity classesE = E1[E2[ ... Elog nwhere Ei = { e : 2i-1·ke<2i } • Prove weight of sampled edges that each cuttakes from each connectivity class has low error • Key point: Edges in ±(U)ÅEi have roughly same pe • This yields a sparsifier U
Notation: • C = ±(U) is a cut • Ci= ±(U) ÅEi is a cut-induced set • Need to prove: for every Ci Prove weight of sampled edges that each cuttakes from each connectivity class has low error C2 C3 C1 C4
Notation:Ci= ±(U) ÅEi is a cut-induced set Prove 8 cut-induced set Ci • Key Ingredients • Hoeffding bound: Provesmall • Bound on # small cut-induced sets:For most of these events, u(C) is large.In other words, #{ cut-induced sets Ciinduced by a small cut C }is small. C2 C3 C1 C4
Counting Small Cut-Induced Sets • Theorem:[Fung-Hariharan-Harvey-Panigrahi ‘11] Let G=(V,E) be a graph. Fix any BµE. Suppose ke¸K for all e in B. (kuv = min size of a cut separating u and v) Then, for every ®¸1,|{ ±(U) ÅB : |±(U)|·®K }| < n2®. • Corollary: [Karger ‘93] Let G=(V,E) be a graph. Let K be the edge-connectivity of G. (i.e., global min cut value) Then, for every ®¸1,|{ ±(U) : |±(U)|·®K }| < n2®.
Summary for Cut Sparsifiers • Do non-uniform sampling of edges,with probabilities based on “connectivity” • Analysis involves: • Decomposing the graph • Hoeffding bounds to analyze each “cut” • Cut-counting theorem: “few small cuts” • BK’96 had weaker cut-counting theorem, but had more complicated “connectivity” notion. • Can get sparsifiers with O(n log n / ²2) edges • Optimal for any independent sampling algorithm
Spectral Sparsification • Input: Graph G=(V,E), weights u : E !R+ • Recall: xTLGx = st2Eust (xs-xt)2 • Goal: Find weights w : E !R+ such that very fewwe are non-zero, and(1-²) xTLGx·e2EwexTLex·(1+²) xTLGx8x2RV , (1- ²) LG¹e2EweLe¹ (1+²) LG • General Problem: Given matrices Le satisfying eLe=LG, find coefficients we, mostly zero, such that (1-²) LG¹eweLe¹ (1+²) LG Call this xTLstx
The General Problem:Sparsifying Sums of PSD Matrices • General Problem: Given PSD matrices Les.t. eLe=LG, find coefficients we, mostly zero, such that (1-²) LG¹eweLe¹ (1+²) LG • Theorem:[Ahlswede-Winter ’02]Randomized alg gives w with O( n log n/²2 ) non-zeros. • Theorem:[de Carli Silva-Harvey-Sato ‘11],building on [Batson-Spielman-Srivastava ‘09]Deterministic alg gives w with O( n/²2 ) non-zeros. • Cut & spectral sparsifiers with O(n/²2) edges [BSS’09] • Sparsifiers with more properties and O(n/²2) edges [dHS’11]
Vector Case Vector Case • Vector problem: Given vectors ve2[0,1]ns.t. eve = v,find coefficients we, mostly zero, such thatkeweve - v k1 · ² • Theorem [Althofer ‘94, Lipton-Young ‘94]:There is a w with O(log n/²2) non-zeros. • Proof: Random sampling & Hoeffding inequality. • Multiplicative version: There is a w with O(n log n/²2) non-zeros such that (1-²) v·eweve· (1+²) v • General Problem: Given PSD matrices Les.t. eLe = L, find coefficients we, mostly zero, such that (1-²) L¹eweLe¹ (1+²) L
Concentration Inequalities • Theorem: [Chernoff ‘52, Hoeffding ‘63]Let Y1,…,Yk be i.i.d. randomnon-negative real numberss.t. E[ Yi ] = Z andYi·uZ. Then • Theorem: [Ahlswede-Winter ‘02]Let Y1,…,Yk be i.i.d. randomPSD nxn matricess.t. E[ Yi ] = Z andYi¹uZ. Then The only difference
“Balls & Bins” Example • Problem: Throw k balls into n bins. Wantmax load / min load · 1+². How big should k be? • AW Theorem: Let Y1,…,Yk be i.i.d. random PSD matricessuch that E[ Yi ] = Z andYi¹uZ. Then • Solution: Let Yi be all zeros, except for a single n in a random diagonal entry. Then E[ Yi ] = I =: Z, and ¸max(Yi Z-1) = n =: u.Set k = £(n logn/²2). Then, with high probability,every diagonal entry of i Yi/k is in [1-²,1+²].
Solving the General Problem • General Problem: Given PSD matrices Les.t. eLe = LG, find coefficients we, mostly zero, such that (1-²) LG¹eweLe¹ (1+²) LG • AW Theorem: Let Y1,…,Yk be i.i.d. random PSD matricessuch that E[ Yi ] = Z andYi¹uZ. Then • Solve General Problem with O(nlogn/²2) non-zeros • Repeat k:=£(nlogn/²2) times • Pick an edge e with probability pe := Tr(LeLG-1)/n • Increment we by 1/k¢pe
Derandomization • Vector problem: Given vectors ve2[0,1]ns.t. eve = v,find coefficients we, mostly zero, such thatkeweve - vk1 · ² • Theorem[Young ‘94]: The multiplicative weights method deterministically gives w with O(log n/²2) non-zeros • Or, use pessimistic estimators on the Hoeffding proof • General Problem: Given PSD matrices Les.t. eLe = LG, find coefficients we, mostly zero, such that (1-²) LG¹eweLe¹ (1+²) LG • Theorem [de Carli Silva-Harvey-Sato ‘11]:The matrix multiplicative weights method (Arora-Kale ‘07)deterministically gives w with O(n log n/²2) non-zeros • Or, use matrix pessimistic estimators (Wigderson-Xiao ‘06)
MWUM for “Balls & Bins” • Let ¸i = load in bin i. Initially ¸=0. Want: 1·¸i and ¸i·1. • Introduce penalty functions “exp(l-¸i)” and “exp(¸i-u)” • Find a bin ¸i to throw a ball into such that,increasing l by ±l and u by ±u, the penalties don’t grow. i exp(l+±l - ¸i’) · i exp(l-¸i) i exp(¸i’-(u+±u)) · i exp(¸i-u) • Careful analysis shows O(n log n/²2) balls is enough ¸ values: u l 0 1
MMWUM for General Problem • Let A=0 and ¸ its eigenvalues. Want: 1·¸i and ¸i·1. • Use penalty functions Tr exp(lI-A) and Tr exp(A-uI) • Find a matrix Le such that adding ®Le to A,increasing l by ±l and u by ±u, the penalties don’t grow. Trexp((l+±l)I- (A+®Le)) · Trexp(lI-A) Trexp((A+®Le)-(u+±u)I) · Tr exp(A-uI) • Careful analysis shows O(n log n/²2) matrices is enough ¸ values: u l 0 1
Beating Sampling & MMWUM • To get a better bound, try changing the penalty functions to be steeper! • Use penalty functions Tr (A-lI)-1 and Tr (uI-A)-1 • Find a matrix Le such that adding ®Le to A,increasing l by ±l and u by ±u, the penalties don’t grow. Tr((A+®Le)-(l+±l)I)-1· Tr(A-lI)-1 Tr((u+±u)I-(A+®Le))-1· Tr (uI-A)-1 All eigenvaluesstay within [l, u] ¸ values: u l 0 1
Beating Sampling & MMWUM • To get a better bound, try changing the penalty functions to be steeper! • Use penalty functions Tr (A-lI)-1 and Tr (uI-A)-1 • Find a matrix Le such that adding ®Le to A,increasing l by ±l and u by ±u, the penalties don’t grow. Tr((A+®Le)-(l+±l)I)-1· Tr(A-lI)-1 Tr((u+±u)I-(A+®Le))-1· Tr (uI-A)-1 • General Problem: Given PSD matrices Les.t. eLe = LG, find coefficients we, mostly zero, such that (1-²) LG¹eweLe¹ (1+²) LG • Theorem:[Batson-Spielman-Srivastava ‘09] in rank-1 case,[de Carli Silva-Harvey-Sato ‘11] for general caseThis gives a solution w with O( n/²2 ) non-zeros.
Applications • Theorem:[de Carli Silva-Harvey-Sato ‘11]Given PSD matrices Les.t. eLe = L, there is analgorithm to find w with O( n/²2 ) non-zeros such that (1-²) L¹eweLe¹ (1+²) L • Application 1: Spectral Sparsifiers with CostsGiven costs on edges of G, can find sparsifier H whose cost isat most (1+²) the cost of G. • Application 2: Simultaneous Spectral SparsifiersGiven two graphs G1 & G2 with a bijection on their edges,can choose edges that simultaneously sparsify G1 & G2. • Application 3: Sparse SDP Solutionsmin { cTy : iyiAiº B, y¸0 } where Ai’s and B are PSDhas nearly optimal solution with O(n/²2) non-zeros.
Open Questions • Use of sparsifiers in other areas (infoviz, etc.) • Sparsifiers for directed graphs • Construction of expander graphs • More control of the weights we • A combinatorial proof of spectral sparsifiers • More applications of our general theorem