690 likes | 914 Views
Comisión Nacional de Energía Atómica. Centro Atómico Bariloche. Ing. Silvia Dutrús. Grupo Nuevos Materiales y Dispositivos Programa Ciclo de Combustibles Gerencia de Área Aplicaciones de la Tecnología Nuclear dutrus@cab.cnea.gov.ar Centro Atómico Bariloche,
E N D
Comisión Nacional de Energía Atómica Centro Atómico Bariloche Ing. Silvia Dutrús Grupo Nuevos Materiales y DispositivosPrograma Ciclo de CombustiblesGerencia de Área Aplicaciones de la Tecnología Nuclear dutrus@cab.cnea.gov.ar Centro Atómico Bariloche, (8400) S.C. De Bariloche, Río Negro, Argentina Tel: +54 2944 445282 Río Negro - Argentina
Una mirada a las ciencias a través del Microscopio Electrónico de Barrido La metalurgia de los indígenas del noroeste neuquino. Las algas del agua que consumimos todos los días. El baño de mi gata. La arena , ¿tiene cristales?. ¿Por donde toman aire las hojas? Los mosquitos, ¿cuantos ojos tienen?. ¿Quién disparó con un arma de fuego?
Técnicas De Análisis Existen muchas y variadas técnicas que nos permiten analizar muestras desde distintos puntos de vista • Químicas • Ópticas • Físicas • Electrónicas • Nucleares etc.. ..
Cada una de ellas nos brinda una datos parciales de la muestra, y de acuerdo a la información que se necesita es la o las técnicas a utilizar.
Por ejemplo si queremos estudiar la cabeza de un insecto con una simple lupa podemos ver la cabeza, alas, patas etc. Los detalles ¿Los podemos ver?
La microscopía óptica no nos alcanza, entonces debemos recurrir a otra técnica que nos permita ver superficies con mas aumento.
Es aquí donde hace su aparición la Microscopía Electrónica de Barrido
Una técnica que nos permite observar superficies con mucho aumento
Un microfósil 0,5 mm Quironómido
Hacemos incidir el haz de electrones sobre la superficie a observar Los electrones primarios arrancan electrones de la muestra en observación Generando así los electrones secundarios
Un detector colecta los electrones secundarios y envía la señal a un televisor donde aparece un punto brillante, que será mas intenso cuanto mayor sea la cantidad de electrones colectados detector de electrones secundarios
El haz de electrones primarios se mueve “barriendo” una zona rectangular como sucede en el televisor de su casa • Por esto se llama : Microscopio Electrónico de Barrido
Hacemos que el haz de electrones “barra” a lo ancho de un rectángulo más pequeño
Toda la información de esa zona aparecerá en la pantalla de TV De esta forma vemos una zona pequeña aumentada muchas veces.
desde 10 veces hasta 200.000 veces
Qué otra cosa se puede hacer con un Microscopio Electrónico de Barrido ?
Algunos de los electrones que inciden sobre la muestra “rebotan” elásticamente Generando así los electrones retrodispersados
Que información nos dan estos electrones? Contraste por número atómico En la imagen las zonas más brillantes son las que corresponden a materiales de mayor número atómico.
Esta es una técnica que utilizamos con frecuencia en el análisis de muestras forenses cuando necesitamos identificar micropartículas de plomo sobre algún material orgánico como puede ser tejido, fibras sintéticas etc..
Cuándo se arrancan electrones de un átomo, este átomo queda inestable y para estabilizarse emite rayos X. Todos los elemento de la naturaleza cuándo se estabilizan emiten rayos-X de distinta energía. rayos-X
Si podemos medir esa energía conoceremos de qué elementos está compuesta la muestra que estamos mirando
De esta manera realizamos un análisis químico elemental • Cualitativo • Cuantitativo
Imagen de electrones retrodispersados Imagen de rayos-X de cobre (Cu, color magenta) Imagen de rayos-X de plomo (Pb color azul) Imágenes de esquirla de bala
De esta manera realizamos un análisis químico de la muestra que observamos
Cuándo queremos saber de que está compuesto un material, por ejemplo un trozo de metal , una cerámica, un vidrio etc..
Este tipo de análisis se llama : dispersivo en energía: cuando medimos la energía a los rayos-X dispersivo en longitud de onda: cuando medimos la longitud de onda a los rayos X E Rayos-X
Este tipo de análisis se llama : dispersivo en energía: si le medimos la energía a los rayos-X dispersivo en longitud de onda: si le medimos la longitud de onda a los rayos X
Mapeo de rayos X Permite detectar las zonas donde se encuentra algún elemento en particular
Imagen de electrones retrodispersados Imagen de rayos-X de cobre (Cu, color magenta) Imagen de rayos-X de plomo (Pb color azul) Imágenes de esquirla de bala
Aluminio Silicio Los puntos brillantes indican las zonas donde se encuentra el elemento detectado
Electrones secundarios • superficie • Contraste por número atómico Electrones retrodispersados • Análisis • mapeo Rayos-X
Tres preguntas que nos hacemos!!! 1 Qué tipo de muestras podemos ver? 2 Cuál es el tamaño más grande de muestra? 3 Cómo se preparan las muestras?
1 Qué tipo de muestras podemos ver? Sólo deben cumplir la condición de estar totalmente secas, es decir sin líquidos. Por qué? El microscopio trabaja en vacío (se ha sacado todo el aire del interior de la cámara donde va la muestra y cualquier líquido que hubiera en ese momento se convertiría en gas y no nos dejaría ver bien la imagen
2 Cuál es el tamaño más grande de muestra? Depende del tamaño de la cámara del microscopio, en nuestro caso pueden hasta de 5cm por 10cm.
3 Cómo se preparan las muestras? Y las muestras biológicas que no conducen?? • Deben estar secas (sin líquidos) • Ser conductoras, es decir debe permitir el paso de los electrones.