140 likes | 271 Views
Parallelizing stencil computations. Based on slides from David Culler, Jim Demmel, Bob Lucas, Horst Simon, Kathy Yelick, et al., UCB CS267. Parallelism in the Game of Life. The activities in this system are discrete events The simulation is synchronous
E N D
Parallelizing stencil computations Based on slides from David Culler, Jim Demmel, Bob Lucas, Horst Simon, Kathy Yelick, et al., UCB CS267
Parallelism in the Game of Life • The activities in this system are discrete events • The simulation is synchronous • use two copies of the grid (old and new) • the value of each new grid cell in new depends only on the 9 cells (itself plus neighbors) in old grid (“stencil computation”) • Each grid cell update is independent: reordering or parallelism OK • simulation proceeds in timesteps, where (logically) each cell is evaluated at every timestep old world new world
Parallelism in Life • Parallelism is straightforward • ocean is regular data structure • even decomposition across processors gives load balance • Locality is achieved by using large patches of the world • boundary values from neighboring patches are needed • Optimization: visit only occupied cells (and neighbors)
Two-dimensional block decomposition • If each processor owns n2/p elements to update, … • … amount of data communicated, n/p per neighbor, is relatively small if n>>p • This is less than n per neighbor for block column decomposition
Redundant “Ghost” Nodes in Stencil Computations • Size of ghost region (and redundant computation) depends on network/memory speed vs. computation • Can be used on unstructured meshes To compute green Copy yellow Compute blue
Comments on practical meshes • Regular 1D, 2D, 3D meshes • Important as building blocks for more complicated meshes • Practical meshes are often irregular • Composite meshes, consisting of multiple “bent” regular meshes joined at edges • Unstructured meshes, with arbitrary mesh points and connectivities • Adaptive meshes, which change resolution during solution process to put computational effort where needed
Parallelism in Regular meshes • Computing a Stencil on a regular mesh • need to communicate mesh points near boundary to neighboring processors. • Often done with ghost regions • Surface-to-volume ratio keeps communication down, but • Still may be problematic in practice Implemented using “ghost” regions. Adds memory overhead
Adaptive Mesh Refinement (AMR) • Adaptive mesh around an explosion • Refinement done by calculating errors • Parallelism • Mostly between “patches,” dealt to processors for load balance • May exploit some within a patch (SMP)
Adaptive Mesh fluid density Shock waves in a gas dynamics using AMR (Adaptive Mesh Refinement) See: http://www.llnl.gov/CASC/SAMRAI/
Challenges of Irregular Meshes for PDE’s • How to generate them in the first place • E.g. Triangle, a 2D mesh generator by Jonathan Shewchuk • 3D harder! E.g. QMD by Stephen Vavasis • How to partition them • ParMetis, a parallel graph partitioner • How to design iterative solvers • PETSc, a Portable Extensible Toolkit for Scientific Computing • Prometheus, a multigrid solver for finite element problems on irregular meshes • How to design direct solvers • SuperLU, parallel sparse Gaussian elimination • These are challenges to do sequentially, more so in parallel