360 likes | 374 Views
Explore why experimental methods are gaining popularity in economics, from field experiments to laboratory studies. Learn about randomization, estimating treatment effects, regression approaches, and avoiding experimental problems. Understanding the uses of other regressors for improved efficiency.
E N D
Experimental Evaluations Methods of Economic Investigation Lecture 4
Why are we doing this? • Experiments are becoming more popular in economics • Development Economics, “Field Experiments” • Behavioral Economics, “Laboratory Experiments” • Sometimes experiments don’t go as planned • Need some econometrics to prove no problems • Need some econometrics to fix the problems • Good baseline for understanding attribution of estimated differences • Can compare other forms of evaluation to the “experimental ideal”
Some Basic Terminology • Start with example where X is binary (though simple to generalize): • X=0 is control group • X=1 is treatment group • Causal effect sometimes called treatment effect • Randomization implies everyone has same probability of treatment • We can change this a bit with weights…
Why is Randomization Good? • If X allocated at random then know that X is independent of all pre-treatment variables in whole wide world • If you don’t have a random sample, then this will apply to internal comparisons but will make external comparisons more difficult • Implies there cannot be a problem of omitted variables, reverse causality etc • On average, only reason for difference between treatment and control group is different receipt of treatment
Pre-treatment characteristics must be independent of randomized treatment • Define the joint distribution of X and W as f(X,W) • Can decompose this into: f(X,W)=fX│W(X│W)fW(W) • Now random assignment means fX│W(X│W)=fX (X) • This implies: f(X,W)=fX (X)fW(W) • This implies X and W independent
What are we estimating • In words: We want to know if, on average, there is a difference in the outcome of interest between the control group and the treatment groups • In Math: we want an estimate of:
Estimating Treatment Effects • Take mean of outcome variable in treatment group • Take mean of outcome variable in control group • Take difference between the two • This is how you learned it in theory and it’s right BUT: • Does not generalize to where X is not binary • Does not directly compute standard errors
Estimating Treatment Effects: A Regression Approach • Run regression: yi=β0+β1Xi+εi • The OLS estimator of β1 is an unbiased estimator of the causal effect of X on y: • To see why: • Recall that the OLS estimates E(y|X) • E(y|X=0)= β0 so OLS estimate of intercept is consistent estimate of E(y│X=0) • E(y|X=1)= β0+β1so β1 is consistent estimate of E(y│X=1) -E(y│X=0) • Hence can read off estimate of treatment effect from coefficient on X • Approach easily generalizes to where X is not binary • Also gives estimate of standard error
Computing Standard Errors • Unless told otherwise regression package will compute standard errors assuming errors are homoskedastic i.e. • Even if only interested in effect of treatment on mean X may affect other aspects of distribution e.g. variance • This will cause heteroskedasticity • This is a second order issue: your coefficient estimates are “right” (consistent) • HOWEVER you can’t do any inference because your OLS standard errors are inconsistent
‘Robust’ Standard Errors • Also called: • Huber-White standard errors • Heteroskedastic-consistent standard errors • Statistics Approach • Get variance of estimate of mean of treatment and control group • Sum to give estimate of variance of difference in means
A Regression-Based Approach • Can estimate this by using sample equivalents • Note that this is same as OLS standard errors if X and ε are independent
A Regression-Based Approach • Have to interpret residual variance differentyl – not common to all individuals but the mean across individuals • With one regressor can write robust standard error as: • Simple to use in practice e.g. in STATA: . reg y x, robust
Summary So Far • Econometrics very easy if all data comes from randomized controlled experiment and everything went as planned • Just need to collect data on treatment/control and outcome variables • Compare means of outcomes of treatment and control groups • Everything doesn’t always go as planned • Treatment effects are small • Randomization fails • Non-compliance to treatment
How to avoid Experimental problems? • Get info on other regressors • Can get consistent estimate of treatment effect without worrying about other variables • But there are reasons to include other regressors: • Improved efficiency • Check for randomization • Improve randomization • Control for conditional randomization • Heterogeneity in treatment effects
The Uses of Other Regressors I: Improved Efficiency • Don’t just want consistent estimate of causal effect – also want low standard error (or high precision or efficiency). • Especially important if treatment effects are small • Standard formula for standard error of OLS estimate of βis σ2(X’X)-1 • σ2 comes from variance of residual in regression – (1-R2)* Var(y)
The asymptotic variance of βˆ is lower when W is included • Proof: (Will only do case where X and W are one-dimensional) • When W is included variance of the estimate of the treatment effect will by first diagonal element of:
Proof (continued) • Now: • Using trick from end of notes on causal effects we can write this as:
Proof (continued) • Inverting leads to • By randomization X and W are independent so: • The only difference is in the error variance – this must be smaller when W is included as R2 rises
The Uses of Other Regressors II: Check for Randomization • Randomization can go wrong • Poor implementation of research design • Bad luck • If randomization done well then W should be independent of X – this is testable: • Test for differences in W in treatment/control groups • Probit model for X on W
The Uses of Other Regressors III:Improve Randomization • Can also use W at stage of assigning treatment • Can guarantee that in your sample X and W are independent instead of it being just probabilistic
The Uses of Other Regressors:Adjust for Conditional Randomization • Conditional randomization is where probability of treatment is different for people with different values of W, but random conditional on W • Why have conditional randomization? • May have no choice • May want to do it (c.f. stratification) • MUST include W to get consistent estimates of treatment effects
Controlling for Conditional Randomization • What we know about our treatment • X is by construction correlated with W • But, conditional on W, X independent of other factors • But must get functional form of relationship between y and W correct – matching procedures • This is not the case with (unconditional) randomization
The Uses of Other Regressors: Heterogeneity in Treatment Effects • So far have assumed causal (treatment) effect the same for everyone but there’s no reason to believe this • May use other variables to test if treatment effect is different between two groups
Estimating Heterogeneous Treatment Effecs • Start with case of no other regressors, suppose that there are different beta’s for everyone, so that: yi=β0+β1iXi+εi • Random assignment implies X independent of β1i • Sometimes called random coefficients model
What treatment effect to estimate? • Would like to estimate causal effect for everyone – this is not possible because we only have one realization of the treatment effect of each person • Instead, we estimate some average this is called the Average Treatment Effect (ATE) • We can estimate ATE with OLS because:
Proposition 2.5OLS estimates ATE • Proof for single regressor:
Observable Heterogeneity • Full outcomes notation: • Outcome if in control group: y0i=γ0’Wi+u0i • Outcome if in treatment group: y1i=γ1’Wi+u1i • Treatment effect is (y1i-y0i) and can be written as: (y1i-y0i )=(γ1- γ0 )’Wi+u1i-u0i • Note treatment effect has observable and unobservable component • Can estimate as: • Two separate equations • One single equation
Combining treatment and control groups into single regression • We can write: • Combining outcomes equations leads to: • Regression includes W and interactions of W with X – these are observable part of treatment effect • Note: error likely to be heteroskedastic
Units of Measurement • Causal effect measured in units of ‘experiment’ – not very helpful • Often want to convert causal effects to more meaningful units • Health Example last week: How much does an extra $ in income get you in better health? • How to interpret improvements in X percent or X standard deviations
Simple estimator of this would be: • where S is the factor we change in the treatment • Takes the treatment effect on outcome variable and divides by treatment effect • Not hard to compute but how to get standard error? • We can do it in a regression • Can use your X as an instrument (more on this when we do IV)
Uses of Extra Regressors: Partial Compliance • So far: • in control group implies no treatment • in treatment group implies get treatment • Often things are not as clean as this • Treatment is an opportunity—not everyone takes it up • Close substitutes available to those in control group • Implementation not perfect so some people get into or out of treatment despite RA
Some Terminology: ITT • Z denotes whether in control or treatment group – Intention To Treat (ITT) • X denotes whether actually get treatment • With perfect compliance: • Pr(X=1│Z=1)=1 • Pr(X=1│Z=0)=0 • With imperfect compliance: 1>Pr(X=1│Z=1)>Pr(X=1│Z=0)> 1>Pr(X=0│Z=0)>Pr(X=0│Z=1)>0
What Do We Want to Estimate? • ‘Intention-to-Treat’: ITT=E(y|Z=1)-E(y|Z=0) • This can be estimated in usual way in the regression • Pro’s • Don’t worry about selection in compliance • Get an average effect of your intervention • Cons • Don’t know what the effect of the actual treatment is—combined effect of treatment and non-compliance
More Terminology: TOT • What if we only looked at those who took up the treatment then we would estimate Treatment Effect on Treated (TOT) • Pros • Looks directly at treatment • Cons • May be biased by the selection of individuals into treatment and control groups
Estimating TOT • Can’t use simple regression of y on Z • But should recognize TOT as Wald estimator • Can estimated by regressing y on X using Z as instrument • Relationship between TOT and ITT:
Next Steps… • What to do when we can’t do experiments because • They didn’t work out like planned • We couldn’t do one on this particular issue • Natural Experiments • Use variation in the world • Several different methods over the next few classes