1 / 45

Origin of Life and Prokaryotes

Origin of Life and Prokaryotes. BIOL 1407. Early Earth. 4.6 billion years ago (bya) Early atmosphere: No free oxygen Primarily nitrogen and carbon dioxide High energy from lightning, UV radiation Photo Credit: Mount St. Helens, May 18, 1980, taken by Austin Post, USGS.

micah
Download Presentation

Origin of Life and Prokaryotes

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Origin of Life and Prokaryotes BIOL 1407

  2. Early Earth • 4.6 billion years ago (bya) • Early atmosphere: • No free oxygen • Primarily nitrogen and carbon dioxide • High energy from lightning, UV radiation • Photo Credit: Mount St. Helens, May 18, 1980, taken by Austin Post, USGS

  3. Conditions of Early Earth • Intense volcanic activity • Meteorite bombardment • Warm environment • Photo Credit: Courtesy of NASA @ http://origins.jpl.nasa.gov/habitable-planets/images/ra7in16-early-earth.jpg

  4. Earliest Evidence of Life • Oldest fossil organisms: photosynthetic cyanobacteria • Western Australia • 3.5 bya

  5. Fossil Stromatolites • Multiple layers of cyanobacteria • Secreted CaCO3  dome-shaped structures • First reefs

  6. Living Stromatolites • Shark Bay, Australia • Hypersaline • Few predators

  7. Fossil vs. Living Cyanobacteria

  8. Earliest Life • Single-celled organisms probably evolved before 3.9 bya • No 3.9 bya fossils • Photo Credit: Robert Simmon, 2008, NASA, Wikimedia Commons Jack Hills: Rock formation in Australia; rocks > 3.6 bya; 4.4 bya zircon crystal found in this formation

  9. Why No 3.9 BYA Fossils? • Few rocks date to 3.9 bya • Tiny unicellular fossils are hard to find • Photo Credit of Proterozoic Stromatolites: UNP, 2006, Wikimedia Commons

  10. Molecular Fossils • Chemical traces of biomolecules • 3.9 bya evidence of prokaryotic lipids • Photo Credit of Hopanoid Compound: MarcoTolo, 2006, Wikimedia Commons

  11. Abiogenesis • Origin of life from non-living components • Photo of Stanley Miller: NASA, 1999, Wikimedia Commons

  12. Four Steps of Abiogenesis • Step 1: Synthesis of organic monomers from inorganic molecules • Photo credit for amino acid, tryptophan: Boghog2, 2007, Wikimedia Commons

  13. Four Steps of Abiogenesis • Step 2: Organic Monomers  Organic Polymers • Catalysts? • Photo Credit for Kassinin: Edgar181, 2007, Wikimedia Commons

  14. Four Steps of Abiogenesis • Step 3: Protobionts form • Protobiont = Organic molecules surrounded by membrane-like structure

  15. Protobionts • Life-like properties: • Reproduce • Simple Metabolism • Membrane potentials

  16. Four Steps of Abiogenesis • Step 4: Heredity • Pass instructions to offspring • Controls protein synthesis • 1st genetic material: RNA? • Photo Credit of Hammerhead Ribozyme: William G. Scott, 2007, Wikimedia Commons

  17. RNA Self-Replication Photo Credit: Campbell, 1999

  18. DNA replaced RNA. Why? Picture Credit: Figure 17-3, 8th ed. Campbell, modified from original

  19. Where did Abiogenesis Occur? • Hypotheses: • Hydrothermal vents • Tide pools • Panspermia: from outer space • Photo Credit for Black Smoker: NOAA, 2006, Wikimedia Commons

  20. Evolution of Prokaryotes? Photo Credit of Lassen Volcanic National Park Hot Springs: Walter Siegmund, 2005, Wikimedia Commons

  21. Oxygen Revolution • Oxygen accumulated • Most anaerobes died • Some survived in anaerobic habitats • Photograph: Banded iron formations that indicate free oxygen in oceans (2.7 bya)

  22. Oxygen Revolution • Oxygen  Evolution of aerobic respiration • Increased ATP production  More energy • Photo Credit of Bacillus cereus on blood agar: CDC, 2006, Wikimedia Commons

  23. Prokaryotic Cells • Review • Prokaryotic cell structure from BIOL 1406 • Cell wall present

  24. Prokaryotic Cells • Review • Circular chromosome • Plasmids

  25. Prokaryotic Cells • Review • Reproduction (binary fission) • Membrane transport • Gases • Water • Wastes • Ions • Photo: Dr. Vincent A. Fischetti, Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, Courtesy of NOAA

  26. Prokaryotic Cell Shapes

  27. Prokaryotic Nutrition • Heterotrophs • Autotrophs

  28. Heterotrophs • Energy from: • Organic matter • Chemoheterotroph • Light • Photoheterotroph

  29. Autotrophs • Energy from: • Inorganic matter • Chemoautotroph • Light • Photoautotroph

  30. Photoautotrophs • Photoautotrophs can be: • Non-oxygenic • Oxygenic Photo: Cyanobacteria that uses oxygenic photosynthesis

  31. Prokaryotic Domains • Domain Bacteria • Domain Archaea

  32. Domain Bacteria • Prokaryote • Cell wall contains peptidoglycan • Circular chromosome • No histones • Photo: Beggiatoa, a sulfur bacterium. Granules contain elemental sulfur produced by the cell’s metabolism.

  33. Domain Bacteria • Five main clades of Bacteria

  34. Clade Proteobacteria

  35. Other Bacterial Clades

  36. Domain Archaea • Prokaryote • No peptidoglycan in cell wall • Circular chromosome • Histones • Photo: Halobacterium, a salt-loving (halophile) archaean. Courtesy of NASA.

  37. Archaeans • Most known archaeans are extremophiles • Picture Credit of Hydrothermal Vent Archeans, Extreme Thermophiles: Courtesy of NOAA

  38. Left: Owen Lake, California Right: Halobacterium Picture Credit: Courtesy of NASA Halophiles

  39. Left: Hot Springs, Yellowstone Right: Nevada Geyser Extreme Thermophiles

  40. Left: Methanopyrus kandleri, 2006, PMPoon, Wikimedia Commons Right: Methanothermobacter, Tashiror, 2006, Wikimedia Commons Methanogens

  41. Left: Sulfolobus, Xiaoya Xiang,2007, Wikimedia Commons Right: Acid mine drainage, Carol Stroker, 2005, NASA Wikimedia Commons Acidophiles

  42. Archaeans in “Normal Environments” • Oceans, soils,freshwater Photo Credit of Worldwide View of Plankton, 1998-2004: NASA, Wikimedia Commons Note: Archaeans are an important part of plankton. Up to 20% of world’s biomass may be archaeans.

  43. Domain Archaea is Sister Taxon to Domain Eukarya

  44. Lateral Gene Transfer • Difficult to find universal ancestor

  45. The End Unless otherwise specified, all images in this presentation came from: Campbell, et al. 2008. Biology, 8th ed. Pearson Benjamin Cummings.

More Related