240 likes | 272 Views
PHY 102: Quantum Physics Topic 3 De Broglie Waves. Wave-particle duality De Broglie Waves Particles in boxes: Energy quantisation Quantisation of orbital angular momentum in Bohr model. Einstein’s postulate.
E N D
PHY 102: Quantum Physics Topic 3 De Broglie Waves
Wave-particle duality • De Broglie Waves • Particles in boxes: Energy quantisation • Quantisation of orbital angular momentum in Bohr model
Einstein’s postulate A beam of light can be treated as a stream of particles (PHOTONS) with zero rest mass Each photon has energy: where h is a constant (Planck’s constant, h ≈ 6.63 x 10-34 Js) f, λ, c, are frequency, wavelength and velocity of light (in vacuum) respectively. Light intensity is proportional to PHOTON FLUX (no of photons passing through unit area per second)
From Special Theory of Relativity…………… consequently, particle with zero rest mass (eg photon) has momentum p given by:
Wave-particle Duality So, an electromagnetic wave of wavelength λand frequency f can be thought of as a stream of particles with energy E and momentum p given by:
The de Broglie Hypothesis In 1924, de Broglie suggested that if waves of wavelength λ were associated with particles of momentum p=h/λ, then it should also work the other way round……. A particle of mass m, moving with velocity v has momentum p given by:
Kinetic Energy of particle If the de Broglie hypothesis is correct, then a stream of classical particles should show evidence of wave-like characteristics……………………………………………
De Broglie wavelength of everyday objects… Eg. Tennis ball…. Mass ~60g Velocity ~ 100mph ≈ 45 m/s Momentum = De Broglie wavelength =
De Broglie wavelength of a 1keV electron.. KE = Momentum = De Broglie wavelength =
Observation of wave-like behaviour Just like a classical wave, effects such as diffraction and interference observed when the wave interacts with objects with dimensions of the same order as the wavelength, ie So, wave-like properties not observed for everyday macroscopic objects, which have de Broglie wavelengths ~10-34 m. What about our electrons, with λ~ 10-10 – 10-11m……??
V= V= V= V= V=0 V=0 Standing wave formed Standing de Broglie waves Eg electron in a “box” (infinite potential well) Electron “rattles” to and fro
V= V= V=0 Wavelengths of confined states L
V= V= V=0 Energies of confined states Ingeneral: n = 1, 2, 3, 4, 5, ………. ie QUANTISED ENERGY LEVELS L
Example calculation 1 Calculate the separation between the two lowest energy states for an electron confined in an infinite potential well of width 1nm………
Example calculation 2 Calculate the separation between the two lowest energy states for an oxygen molecule confined in a 1cm cubic box m=2.7 x 10-26 kg
When do quantisation effects become important? Rule of thumb: at temperatures below which kT becomes comparable with ΔE. For our confined electron (example 1), T~10000K For our oxygen molecule, T~10-15K !!!!!!!! So, quantisation effects easy to observe for electron, whereas the translational motion of the gas atom in the “normal sized” box obeys classical mechanics (continuous energy distribution) (NB kT at room temperature (300K) is about 0.025eV)
v r -e F +Ze The Bohr Model (1912-13) Bohr suggested that the electrons in an atom orbit the positively-charged nucleus, in a similar way to planets orbiting the Sun (but centripetal force provided by electrostatic attraction rather that gravitation) Hydrogen atom: single electron orbiting positive nucleus of charge +Ze, where Z =1:
Failure of the Classical model The orbiting electron is an accelerating charge. Accelerating charges emit electromagnetic waves and therefore lose energy Classical physics predicts electron should “spiral in” to the nucleus emitting continuous spectrum of radiation as the atom “collapses” CLASSICAL PHYSICS CAN’T GIVE US STABLE ATOMS………………..
Quantisation of angular momentum Bohr now makes the bold assumption that the orbital angular momentum of the electron is quantised……… Since v is perpendicular to r, the orbital angular momentum is just given by L = mvr. Bohr suggested that this is quantised, so that: IMPLICATIONS???..........................................................................
Electron standing waves and the Bohr Model Bohr’s suggestion that orbital angular momentum of electrons is quantised is equivalent to the requirement that an integer number of de Broglie wavelengths must fit into the electron orbit: