1 / 4

Sinusoidal Modeling

Sinusoidal Modeling. I. Getting the trig equation from data points. Standard formula: y = D + A trig B(x + C). A) A = Amplitude (the height [y values] of the graph). 1) A = ½ the distance between the highest & lowest pts. 2) A = ½ (maximum y value – minimum y value).

michealk
Download Presentation

Sinusoidal Modeling

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Sinusoidal Modeling I. Getting the trig equation from data points. Standard formula: y = D + A trig B(x + C). A) A = Amplitude (the height [y values] of the graph). 1) A = ½ the distance between the highest & lowest pts. 2) A = ½ (maximum y value – minimum y value). a) If the first time (x) value is a min, then use –A. B) Period: How quickly the graph repeats. P = 2π/B 1) P is the x distances between … *a) P = 2•(the x value for max pt – the x value for min pt) b) P = (the x value for 1st max pt – x value for next max) c) P = (the x value for 1st min pt – x value for next min) 2) If P = 2π/B , then B = 2π/P

  2. Sinusoidal Modeling I. Getting the trig equation from data points. Standard formula: y = D + A trig B(x + C). C) Horizontal translation (the C term). A shift along the x-axis. (It’s best to use the cosine function as your trig function.) 1) Find the 1st time value (is it a max or min?). Influences A. a) That x value is the C term (change the sign). b) If (x , y) is the max point, then (C , max y value). becomes f(x) = cos (x – C) [we change the sign]. D) Vertical translation (the D term). A shift along the y-axis 1) Find the average of the max & min heights. a) D = ½ (max height + min height) [height is y values]

  3. Sinusoidal Modeling Standard formula: y = D + A trig B(x + C). Example: The table below shows the high temperatures for each month for Tallahassee. Write a trig model for the data. A = ½ (maximum y value – minimum y value) A = ½ (92.0 – 63.8) A = ½ (28.2) A = 14.1 P = 2 • (the x value for max pt – the x value for min pt) P = 2 • (7 – 1) P = 2 • (6) B = 2π/P = 2π/12 = π/6 P = 12

  4. Sinusoidal Modeling Standard formula: y = D + A trig B(x + C). Horizontal translation (the C term). A shift along the x-axis. Find the x value when its at its maximum height (y). (7, 92.0) That x value is the C term (change the sign). So C = –7 Vertical translation (the D term). A shift along the y-axis D = ½ (max height + min height) [height is y values] D = ½ (92.0 + 63.8) = ½ (155.8) = 77.9 A = 14.1 B = π/6 C = –7 D = 77.9 Use cosine: y = 77.9 + 14.1 cos π/6(x – 7)

More Related