1 / 44

Taylor & Thornton, ALSTOM Power, Rugby

Taylor & Thornton, ALSTOM Power, Rugby. 0.5 µm. a. b. V   V . dV  = ( 1 - ) dV . e. V. V   V . dV  = ( 1 - ) dV . e. V. Robson, Jones & Bhadeshia, 1996. 2.25Cr1Mo 600 °C. M 3 C. M 2 X. M 23 C 6. Time / h. 1000 h. 3Cr1 .5Mo 600 °C.

mieshar
Download Presentation

Taylor & Thornton, ALSTOM Power, Rugby

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Taylor & Thornton, ALSTOM Power, Rugby

  2. 0.5 µm

  3. a b

  4. VV dV = (1 - ) dV e V VV dV = (1 - ) dV e V

  5. Robson, Jones & Bhadeshia, 1996

  6. 2.25Cr1Mo 600 °C M3C M2X M23C6 Time / h 1000 h

  7. 3Cr1.5Mo 600 °C M23C6 Time / h

  8. 0.02500 NF616 600 °C M23C6 M C 3 0.02000 0.01500 0.01000 Laves M X 0.00500 2 0.00000 1e-03 1e+00 1e+03 Time / h

  9. Empirical Equations y = a + b (%C) +c (%Mn) + d (%Ni) .... 1223

  10. y = a + b (%C) +c (%Mn) y = a + b (%C) +c (%Mn) + d(%C x %Mn)

  11. y = a + b (%C) +c (%Mn) y = a + b (%C) +c (%Mn) + d(%C x %Mn) y =sin (%C) + tanh (%Mn)

  12. Hyperbolic Tangents

  13. The complexity of the model is given by the number of hidden units, i.e. the number of hyperbolic tangent functions included

  14. y A B x

  15. Brun, Robson, Narayan, MacKay & Bhadeshia, 1998

  16. Components of Creep Strength, 2.25Cr1Mo iron + microstructure 550 °C solid solution 600 °C precipitates Murugananth & Bhadeshia, 2001

  17. elements in solution Murugananth & Bhadeshia, 2001

  18. Cole & Bhadeshia, 1999

  19. GTA weld at 823 K (data from Nippon Steel) 600 500 400 300 200 100 0 20000 30000 40000 Life / hours Cole & Bhadeshia, 1999

  20. Cole & Bhadeshia, 1999

  21. Linkweld Project, Siemens Power Generation o W5397 Weld Metal Rupture at 570 C 500 400 300 200 100 0 2 3 4 5 6 log(life / h) Cole and Bhadeshia, 2000

  22. Data from Manoir Industries 9Cr 1Mo type steel (Z1092, 600 °C) 300 200 Rupture stress / MPa 100 0 0 1 2 3 4 5 log (life / h) Cole and Bhadeshia, 2000

  23. Cool, 1996

  24. Cool, 1996

  25. 600 °C As-welded 700 °C 650 °C Cool, 1996

  26. Coarsening diffusion r r 2 1 flux a q q concentration aq c r aq 1 c r 2 distance

  27. -6 10 -7 10 -8 10 -9 10 2 3 4 5 6 7 8 9 10 10 10 10 10 10 10 10 10 10 4 2 0 2 3 4 5 6 7 8 9 10 10 10 10 10 10 10 10 10 10 1/3 Mean radius / m 1/2 Time / s -3 Number density 18 10 m Time / s Fujita & Bhadeshia, 2000

  28. 1 10 0 10 -1 10 -2 10 1 2 3 4 10 10 10 10 Data from Abe, 1999 Fe-9Cr-W alloys 0W 1W 2W 4W M_23C_6 size / µm Time at 600 °C / h

  29. 1.8e-19 1.7e-19 1.6e-19 1.5e-19 0 1 2 3 4 5 Coarsening accelerated by tungsten! -1 chromium alone 2 Effective diffusivity / m s multicomponent Tungsten / wt% Bhadeshia, 2000

  30. 0.03 0.02 0.01 0.00 0 1 2 3 4 5 M_23 C_6 Mole fraction of phase Laves phase Tungsten / wt% Bhadeshia, 2000

  31. Multiphase coarsening Laves concentration in ferrite q q distance Bhadeshia, 2000

  32. The microscopic world Atom (10-8 cm) Nucleus (10-12 cm) Nucleon (10-13 cm) Gelletly, Phil. Trans. Roy. Soc. Lond. A, 356 (1998) 1952. Quark (10-18 cm)

  33. Multicomponent coarsening Venugopalan & Kirkaldy, 1978

More Related