300 likes | 534 Views
SIMPLIFY using. a Venn Digram or Laws of Set Algebra. Pamela Leutwyler. example 1. (A B) (A B) = ____. (A B) (A B) = ____. Venn Diagram:. A. B. 1. 3. 2. 4. (A B) (A B) . (A B) (A B) = ____. Venn Diagram:. A. B. 1. 3. 2. 4.
E N D
SIMPLIFY using a Venn Digram orLaws of Set Algebra Pamela Leutwyler
(A B) (A B) = ____ Venn Diagram: A B 1 3 2 4 (A B) (A B)
(A B) (A B) = ____ Venn Diagram: A B 1 3 2 4 (A B) (A B) 1
(A B) (A B) = ____ Venn Diagram: A B 1 3 2 4 (A B) (A B) 1 (1,2
(A B) (A B) = ____ Venn Diagram: A B 1 3 2 4 (A B) (A B) 1 (1,22,4)
(A B) (A B) = ____ Venn Diagram: A B 1 3 2 4 (A B) (A B) 1 (1,22,4) 1 2
(A B) (A B) = ____ Venn Diagram: A B 1 3 2 4 (A B) (A B) 1 (1,22,4) 1 2 1 , 2 =A
(A B) (A B) = ____ Venn Diagram: Laws of Set Algebra:: (A B) (A B) A B 1 3 2 4 (A B) (A B) 1 (1,22,4) 1 2 1 , 2 =A
(A B) (A B) = ____ Venn Diagram: Laws of Set Algebra:: (A B) (A B) A B Distributive law 1 3 2 A ( B B) 4 (A B) (A B) 1 (1,22,4) 1 2 1 , 2 =A
(A B) (A B) = ____ Venn Diagram: Laws of Set Algebra:: (A B) (A B) A B Distributive law 1 3 2 A ( B B) 4 Complement Law A U (A B) (A B) 1 (1,22,4) 1 2 1 , 2 =A
A (A B) (A B) = ____ Venn Diagram: Laws of Set Algebra:: (A B) (A B) A B Distributive law 1 3 2 A ( B B) 4 Complement Law A U (A B) (A B) Identity Law 1 (1,22,4) =A 1 2 1 , 2 =A
[A ( B A )] [A B ] = ____ Venn Diagram: A B 1 3 2 4 [A ( B A )] [A B ]
[A ( B A )] [A B ] = ____ Venn Diagram: A B 1 3 2 4 [A ( B A )] [A B ] [A (1,3 A )] [A B ]
[A ( B A )] [A B ] = ____ Venn Diagram: A B 1 3 2 4 [A ( B A )] [A B ] [A (1,3 3,4)] [A B ]
[A ( B A )] [A B ] = ____ Venn Diagram: A B 1 3 2 4 [A ( B A )] [A B ] [A (1,3 3,4)] [A B ] [A (1,3,4)] [A B ]
[A ( B A )] [A B ] = ____ Venn Diagram: A B 1 3 2 4 [A ( B A )] [A B ] [A(1,3 3,4)] [A B ] [1,2(1,3,4)] [A B ]
[A ( B A )] [A B ] = ____ Venn Diagram: A B 1 3 2 4 [A ( B A )] [A B ] [A (1,3 3,4)] [A B ] [1,2 (1,3,4)] [A B ] [ 1 ] [A B ]
[A ( B A )] [A B ] = ____ Venn Diagram: A B 1 3 2 4 [A ( B A )] [A B ] [A (1,3 3,4)] [A B ] [1,2 (1,3,4)] [A B ] [ 1 ] [A B ] [ 1 ] [ 3 ]
[A ( B A )] [A B ] = ____ Venn Diagram: A B 1 3 2 4 [A ( B A )] [A B ] [A (1,3 3,4)] [A B ] [1,2 (1,3,4)] [A B ] [ 1 ] [A B ] [ 1 ] [ 3 ] 1, 3
[A ( B A )] [A B ] = ____ Venn Diagram: A B 1 3 2 4 [A ( B A )] [A B ] [A (1,3 3,4)] [A B ] [1,2 (1,3,4)] [A B ] [ 1 ] [A B ] [ 1 ] [ 3 ] 1, 3 = B
[A ( B A )] [A B ] = ____ Venn Diagram: Laws of Set Algebra:: [A ( B A )] [A B ] Distributive Law A B 1 3 [(AB) (A A)] [A B ] 2 4 [A ( B A )] [A B ] [A (1,3 3,4)] [A B ] [1,2 (1,3,4)] [A B ] [ 1 ] [A B ] [ 1 ] [ 3 ] 1, 3 = B
[A ( B A )] [A B ] = ____ Venn Diagram: Laws of Set Algebra:: [A ( B A )] [A B ] Distributive Law A B 1 3 [(AB) (A A)] [A B ] 2 Complement Law 4 [(AB) ] [A B ] Identity Law [A ( B A )] [A B ] [(AB) ] [A B ] [A (1,3 3,4)] [A B ] [1,2 (1,3,4)] [A B ] [ 1 ] [A B ] [ 1 ] [ 3 ] 1, 3 = B
[A ( B A )] [A B ] = ____ Venn Diagram: Laws of Set Algebra:: [A ( B A )] [A B ] Distributive Law A B 1 3 [(AB) (A A)] [A B ] 2 Complement Law 4 [(AB) ] [A B ] Identity Law [A ( B A )] [A B ] [(AB) ] [A B ] [A B ] [A B ] [A (1,3 3,4)] [A B ] [1,2 (1,3,4)] [A B ] [ 1 ] [A B ] [ 1 ] [ 3 ] 1, 3 = B
[A ( B A )] [A B ] = ____ Venn Diagram: Laws of Set Algebra:: [A ( B A )] [A B ] Distributive Law A B 1 3 [(AB) (A A)] [A B ] 2 Complement Law 4 [(AB) ] [A B ] Identity Law [A ( B A )] [A B ] [(AB) ] [A B ] [A B] [A B ] [A (1,3 3,4)] [A B ] Distributive Law [1,2 (1,3,4)] [A B ] ( A A ) B [ 1 ] [A B ] [ 1 ] [ 3 ] 1, 3 = B
[A ( B A )] [A B ] = ____ Venn Diagram: Laws of Set Algebra:: [A ( B A )] [A B ] Distributive Law A B 1 3 [(AB) (A A)] [A B ] 2 Complement Law 4 [(AB) ] [A B ] Identity Law [A ( B A )] [A B ] [(AB) ] [A B ] [A B ] [A B ] [A (1,3 3,4)] [A B ] Distributive Law [1,2 (1,3,4)] [A B ] ( A A ) B [ 1 ] [A B ] Complement Law U B [ 1 ] [ 3 ] 1, 3 = B
B [A ( B A )] [A B ] = ____ Venn Diagram: Laws of Set Algebra:: [A ( B A )] [A B ] Distributive Law A B 1 3 [(AB) (A A)] [A B ] 2 Complement Law 4 [(AB) ] [A B ] Identity Law [A ( B A )] [A B ] [(AB) ] [A B ] [A B ] [A B ] [A (1,3 3,4)] [A B ] Distributive Law [1,2 (1,3,4)] [A B ] ( A A ) B [ 1 ] [A B ] Complement Law U B [ 1 ] [ 3 ] Identity Law = B 1, 3 = B