1 / 30

SIMPLIFY using

SIMPLIFY using. a Venn Digram or Laws of Set Algebra. Pamela Leutwyler. example 1. (A  B)  (A  B) = ____. (A  B)  (A  B) = ____. Venn Diagram:. A. B. 1. 3. 2. 4. (A  B)  (A  B) . (A  B)  (A  B) = ____. Venn Diagram:. A. B. 1. 3. 2. 4.

mika
Download Presentation

SIMPLIFY using

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. SIMPLIFY using a Venn Digram orLaws of Set Algebra Pamela Leutwyler

  2. example 1

  3. (A  B)  (A B) = ____

  4. (A  B)  (A B) = ____ Venn Diagram: A B 1 3 2 4 (A  B)  (A B)

  5. (A  B)  (A B) = ____ Venn Diagram: A B 1 3 2 4 (A  B)  (A B) 1

  6. (A  B)  (A B) = ____ Venn Diagram: A B 1 3 2 4 (A  B)  (A B) 1  (1,2

  7. (A  B)  (A B) = ____ Venn Diagram: A B 1 3 2 4 (A  B)  (A B) 1  (1,22,4)

  8. (A  B)  (A B) = ____ Venn Diagram: A B 1 3 2 4 (A  B)  (A B) 1  (1,22,4) 1  2

  9. (A  B)  (A B) = ____ Venn Diagram: A B 1 3 2 4 (A  B)  (A B) 1  (1,22,4) 1  2 1 , 2 =A

  10. (A  B)  (A B) = ____ Venn Diagram: Laws of Set Algebra:: (A  B)  (A B) A B 1 3 2 4 (A  B)  (A B) 1  (1,22,4) 1  2 1 , 2 =A

  11. (A  B)  (A B) = ____ Venn Diagram: Laws of Set Algebra:: (A  B) (A B) A B Distributive law 1 3 2 A  ( B  B) 4 (A  B)  (A B) 1  (1,22,4) 1  2 1 , 2 =A

  12. (A  B)  (A B) = ____ Venn Diagram: Laws of Set Algebra:: (A  B)  (A B) A B Distributive law 1 3 2 A  ( B  B) 4 Complement Law A  U (A  B)  (A B) 1  (1,22,4) 1  2 1 , 2 =A

  13. A (A  B)  (A B) = ____ Venn Diagram: Laws of Set Algebra:: (A  B)  (A B) A B Distributive law 1 3 2 A  ( B  B) 4 Complement Law A  U (A  B)  (A B) Identity Law 1  (1,22,4) =A 1  2 1 , 2 =A

  14. example 2

  15. [A  ( B  A )]  [A  B ] = ____

  16. [A  ( B  A )]  [A  B ] = ____ Venn Diagram: A B 1 3 2 4 [A  ( B  A )]  [A  B ]

  17. [A  ( B  A )]  [A  B ] = ____ Venn Diagram: A B 1 3 2 4 [A  ( B  A )]  [A  B ] [A (1,3  A )]  [A  B ]

  18. [A  ( B  A )]  [A  B ] = ____ Venn Diagram: A B 1 3 2 4 [A  ( B  A )]  [A  B ] [A (1,3  3,4)]  [A  B ]

  19. [A  ( B  A )]  [A  B ] = ____ Venn Diagram: A B 1 3 2 4 [A  ( B  A )]  [A  B ] [A (1,3  3,4)]  [A  B ] [A  (1,3,4)]  [A  B ]

  20. [A  ( B  A )]  [A  B ] = ____ Venn Diagram: A B 1 3 2 4 [A  ( B  A )]  [A  B ] [A(1,3  3,4)]  [A  B ] [1,2(1,3,4)]  [A  B ]

  21. [A  ( B  A )]  [A  B ] = ____ Venn Diagram: A B 1 3 2 4 [A  ( B  A )]  [A  B ] [A (1,3  3,4)]  [A  B ] [1,2 (1,3,4)]  [A  B ] [ 1 ]  [A  B ]

  22. [A  ( B  A )]  [A  B ] = ____ Venn Diagram: A B 1 3 2 4 [A  ( B  A )]  [A  B ] [A (1,3  3,4)]  [A  B ] [1,2 (1,3,4)]  [A  B ] [ 1 ]  [A  B ] [ 1 ]  [ 3 ]

  23. [A  ( B  A )]  [A  B ] = ____ Venn Diagram: A B 1 3 2 4 [A  ( B  A )]  [A  B ] [A (1,3  3,4)]  [A  B ] [1,2 (1,3,4)]  [A  B ] [ 1 ]  [A  B ] [ 1 ]  [ 3 ] 1, 3

  24. [A  ( B  A )]  [A  B ] = ____ Venn Diagram: A B 1 3 2 4 [A  ( B  A )]  [A  B ] [A (1,3  3,4)]  [A  B ] [1,2 (1,3,4)]  [A  B ] [ 1 ]  [A  B ] [ 1 ]  [ 3 ] 1, 3 = B

  25. [A  ( B  A )]  [A  B ] = ____ Venn Diagram: Laws of Set Algebra:: [A  ( B  A )] [A  B ] Distributive Law A B 1 3 [(AB) (A  A)] [A  B ] 2 4 [A  ( B  A )]  [A  B ] [A (1,3  3,4)]  [A  B ] [1,2 (1,3,4)]  [A  B ] [ 1 ]  [A  B ] [ 1 ]  [ 3 ] 1, 3 = B

  26. [A  ( B  A )]  [A  B ] = ____ Venn Diagram: Laws of Set Algebra:: [A  ( B  A )]  [A  B ] Distributive Law A B 1 3 [(AB) (A  A)]  [A  B ] 2 Complement Law 4 [(AB)   ]  [A  B ] Identity Law [A  ( B  A )]  [A  B ] [(AB) ]  [A  B ] [A (1,3  3,4)]  [A  B ] [1,2 (1,3,4)]  [A  B ] [ 1 ]  [A  B ] [ 1 ]  [ 3 ] 1, 3 = B

  27. [A  ( B  A )]  [A  B ] = ____ Venn Diagram: Laws of Set Algebra:: [A  ( B  A )]  [A  B ] Distributive Law A B 1 3 [(AB) (A  A)]  [A  B ] 2 Complement Law 4 [(AB)   ]  [A  B ] Identity Law [A  ( B  A )]  [A  B ] [(AB) ]  [A  B ] [A  B ]  [A  B ] [A (1,3  3,4)]  [A  B ] [1,2 (1,3,4)]  [A  B ] [ 1 ]  [A  B ] [ 1 ]  [ 3 ] 1, 3 = B

  28. [A  ( B  A )]  [A  B ] = ____ Venn Diagram: Laws of Set Algebra:: [A  ( B  A )]  [A  B ] Distributive Law A B 1 3 [(AB) (A  A)]  [A  B ] 2 Complement Law 4 [(AB)   ]  [A  B ] Identity Law [A  ( B  A )]  [A  B ] [(AB) ]  [A  B ] [A  B]  [A  B ] [A (1,3  3,4)]  [A  B ] Distributive Law [1,2 (1,3,4)]  [A  B ] ( A  A  )  B [ 1 ]  [A  B ] [ 1 ]  [ 3 ] 1, 3 = B

  29. [A  ( B  A )]  [A  B ] = ____ Venn Diagram: Laws of Set Algebra:: [A  ( B  A )]  [A  B ] Distributive Law A B 1 3 [(AB) (A  A)]  [A  B ] 2 Complement Law 4 [(AB)   ]  [A  B ] Identity Law [A  ( B  A )]  [A  B ] [(AB) ]  [A  B ] [A  B ]  [A  B ] [A (1,3  3,4)]  [A  B ] Distributive Law [1,2 (1,3,4)]  [A  B ] ( A  A  )  B [ 1 ]  [A  B ] Complement Law U B [ 1 ]  [ 3 ] 1, 3 = B

  30. B [A  ( B  A )]  [A  B ] = ____ Venn Diagram: Laws of Set Algebra:: [A  ( B  A )]  [A  B ] Distributive Law A B 1 3 [(AB) (A  A)]  [A  B ] 2 Complement Law 4 [(AB)   ]  [A  B ] Identity Law [A  ( B  A )]  [A  B ] [(AB) ]  [A  B ] [A  B ]  [A  B ] [A (1,3  3,4)]  [A  B ] Distributive Law [1,2 (1,3,4)]  [A  B ] ( A  A  )  B [ 1 ]  [A  B ] Complement Law U B [ 1 ]  [ 3 ] Identity Law = B 1, 3 = B

More Related