300 likes | 540 Views
Maximum Entropy, Maximum Entropy Production and their Application to Physics and Biology. Roderick C. Dewar Research School of Biological Sciences The Australian National University. Part 1: Maximum Entropy (MaxEnt) – an overview Part 2: Applying MaxEnt to ecology
E N D
Maximum Entropy, Maximum Entropy Production and their Application to Physics and Biology Roderick C. Dewar Research School of Biological Sciences The Australian National University
Part 1: Maximum Entropy (MaxEnt) – an overview Part 2: Applying MaxEnt to ecology Part 3: Maximum Entropy Production (MEP) • Part 4: Applying MEP to physics & biology
Part 1: MaxEnt – an overview • The problem: to predict “complex system” behaviour • The solution: statistical mechanics • - Boltzmann microstate counting (maximum probability) • - Gibbs algorithm (MaxEnt) • Applications of MaxEnt to equilibrium systems • - micro-canonical, canonical, grand-canonical distributions • Physical interpretation of MaxEnt • - frequency interpretation • - information theory interpretation (Jaynes) • Extension to non-equilibrium systems (Jaynes) • General properties of MaxEnt distributions
Part 1: MaxEnt – an overview • The problem: to predict “complex system” behaviour • The solution: statistical mechanics • - Boltzmann microstate counting (maximum probability) • - Gibbs algorithm (MaxEnt) • Applications of MaxEnt to equilibrium systems • - micro-canonical, canonical, grand-canonical distributions • Physical interpretation of MaxEnt • - frequency interpretation • - information theory interpretation (Jaynes) • Extension to non-equilibrium systems (Jaynes) • General properties of MaxEnt distributions
What is the problem? - to predict the macroscopic behaviour of systems having many interacting degrees of freedom cells, plants, ecosystems, economies, climates … many interacting degrees of freedom energy out energy in matter in matter out system open non-equilibrium environment
Poleward heat transport 170 W m-2 300 W m-2 Latitudinal heat transport H = ? SW T LW
Cold plate, Tc convection conduction Hot plate, Th Turbulent heat flow (Raleigh-Bénard convection) Ra < 1760 Ra > 1760 Cold plate, Tc T H = ? Hot plate, Th
Flw + H + E C, H20, O2, N Fsw Ecosystem energy & mass fluxes T,
Global Circulation Models, Dynamic Ecosystem Models …. What is the problem? - to predict the macroscopic behaviour of systems having many interacting degrees of freedom cells, plants, ecosystems, economies, climates … many interacting degrees of freedom energy out energy in matter in matter out system open non-equilibrium environment many degrees of freedom statistical mechanics
Part 1: MaxEnt – an overview • The problem: to predict “complex system” behaviour • The solution: statistical mechanics • - Boltzmann microstate counting (maximum probability) • - Gibbs algorithm (MaxEnt) • Applications of MaxEnt to equilibrium systems • - micro-canonical, canonical, grand-canonical distributions • Physical interpretation of MaxEnt • - frequency interpretation • - information theory interpretation (Jaynes) • Extension to non-equilibrium systems (Jaynes) • General properties of MaxEnt distributions
Boltzmann microstate counting Microstate i1 Macrostate A = less detailed description Microstate i2 W(A) = number of microstates that give macrostate A The most probable macrostate A is the one with the largest W(A) (assume microstates are a priori equiprobable) Ludwig Boltzmann (1844 - 1906) SB(A) = kBlog W(A) = Boltzmann entropy of macrostate A The most probable macrostate is the one of maximum entropy
ε3 ε2 ε1 Example: N independent distinguishable particles with fixed total energy E Microstate i = {the mthparticle is in state jm} Macrostate A = {njparticles are in state j} : maximise S = kBlog W subject to (large N)
Boltzmann entropy Clausius entropy Given E, Smax = kBlogWmax = kB(βE + NlogZ) underδE = δQ, Smax changes by δSmax = kBβ(δQ) cf. Clausius thermodynamic entropyδSTD = δQ/T Smax STD β1/kBT BUT: microstate counting only works for non-interacting particles
The Gibbs algorithm (MaxEnt) Maximise H = -ipi log pi with respect to {pi} subject to the constraints (C) on the system Gibbs algorithm pi = probability that system is in microstate i Macroscopic predictions via But how do we constructpi ? J Willard Gibbs (1839 - 1903) ‘minimise the index of probability of phase’
Part 1: MaxEnt – an overview • The problem: to predict “complex system” behaviour • The solution: statistical mechanics • - Boltzmann microstate counting (maximum probability) • - Gibbs algorithm (MaxEnt) • Applications of MaxEnt to equilibrium systems • - micro-canonical, canonical, grand-canonical distributions • Physical interpretation of MaxEnt • - frequency interpretation • - information theory interpretation (Jaynes) • Extension to non-equilibrium systems (Jaynes) • General properties of MaxEnt distributions
Three applications of MaxEnt (equilibrium systems) Distribution (pi) System constraints (C) • Closed, isolated • Closed • Open • Microcanonical • Canonical • Grand-canonical
Example 1: closed, isolated system in equilibrium Microstate i = any N-particle state with total energy Eirestricted to E Precise description of i and Ei depends on microscopic physics (CAN include particle interactions) C: N and E fixed Maximise subject to basis for Boltzmann’s microstate counting
C: N and fixed Example 2: closed system in equilibrium E Microstate i = any N-particle state (no restriction on Ei) Maximise subject to Hmax STD β 1/kBT
C: and fixed Example 3: open system in equilibrium E N Microstate i = any physically allowed microscopic state (no restriction on Ei or Ni) Maximise subject to Hmax STD β 1/kBT γ -μ/kBT
Part 1: MaxEnt – an overview • The problem: to predict “complex system” behaviour • The solution: statistical mechanics • - Boltzmann microstate counting (maximum probability) • - Gibbs algorithm (MaxEnt) • Applications of MaxEnt to equilibrium systems • - micro-canonical, canonical, grand-canonical distributions • Physical interpretation of MaxEnt • - frequency interpretation • - information theory interpretation (Jaynes) • Extension to non-equilibrium systems (Jaynes) • General properties of MaxEnt distributions
Frequency interpretation (Venn, Pearson, Fisher …) pi describes a physical property of the real world (frequency) System has Ωa priori equiprobable microstates N independent identical systems, ni = no. of systems in state i pi =ni /N = frequency of microstate i W = no. of microstates giving {n1,n2 … nΩ} MaxEnt coincides with large-N limit of Maximum Probability for multinomial W
minimum uncertainty : pi = 0 (i = 1,2...5), p6 = 1 H = 0 maximum uncertainty : pi = 1/6 (i = 1…6) H = log 6 Information theory interpretation (Shannon 1948, Jaynes 1957 …) • pi represents our state of knowledge of the real world • basic axioms foruncertainty H associated with pi • the unique uncertainty function is • Applies to any discrete set of outcomes i Claude Shannon (1916-2001)
Q (= ΣipiQi) reproducible under C it is sufficient to encode only the information Cinto pi … … but this is precisely what MaxEnt does! H = -ipi log pi = missing information about i MaxEnt = max H subject to C all information other than C is thrown away Jaynes (1957b, 1978) Behaviour that is experimentally reproducible under conditions C must be theoretically predictable from Calone Edwin Jaynes (1922-1998)
The prediction game PREDICTION ESSENTIAL PHYSICS Reproducible behaviour Q Max H subject to C pi Assumed constraints C experimental conditions conservation laws microstates (e.g. QM) MaxEnt test C C' OBSERVATION Observed behaviour Qobs QobsQ missing constraint
Part 1: MaxEnt – an overview • The problem: to predict “complex system” behaviour • The solution: statistical mechanics • - Boltzmann microstate counting (maximum probability) • - Gibbs algorithm (MaxEnt) • Applications of MaxEnt to equilibrium systems • - micro-canonical, canonical, grand-canonical distributions • Physical interpretation of MaxEnt • - frequency interpretation • - information theory interpretation (Jaynes) • Extension to non-equilibrium systems (Jaynes) • General properties of MaxEnt distributions
Information theory interpretation of MaxEnt general algorithm for predicting reproducible behaviour under given constraints can be extended to non-equilibrium systems (same principle, different constraints) ‘Maximum caliber principle’ (Jaynes 1980, 1996) Edwin Jaynes (aged 14 months) cf. Feynman path integral formalism of QM!
The second law in a nutshell WB after Jaynes 1963, 1988 A B reproducible macroscopic change . . S = kBlog W microscopic path in phase-space WA' WA AB reproducible WB WA' = WA SB SA Liouville Theorem (Hamiltonian dynamics)
Part 1: MaxEnt – an overview • The problem: to predict “complex system” behaviour • The solution: statistical mechanics • - Boltzmann microstate counting (maximum probability) • - Gibbs algorithm (MaxEnt) • Applications of MaxEnt to equilibrium systems • - micro-canonical, canonical, grand-canonical distributions • Physical interpretation of MaxEnt • - frequency interpretation • - information theory interpretation (Jaynes) • Extension to non-equilibrium systems (Jaynes) • General properties of MaxEnt distributions
Some general properties of MaxEnt distributions subject to m + 1 constraints C Partition function: Orthogonality: Constitutive relation: Response-fluctuation & reciprocity relations: Stability-convexity relation:
Summary of Lecture 1 … Boltzmann The problem to predict the behaviour of non-equilibrium systems with many degrees of freedom The proposed solution MaxEnt: a general information-theoretical algorithm for predicting reproducible behaviour under given constraints Gibbs Shannon Jaynes