1 / 50

Exploring Alternative Approaches to CFD

This workshop statement highlights the barriers to progress and technology drivers in Computational Fluid Dynamics, including multiple scales, software complexity, and the need for higher-order accuracy. It also discusses the challenges of CFD accuracy for drag prediction and the potential of higher-order methods. The workshop explores the use of efficient solvers and multigrid methods, as well as the implementation of discontinuous Galerkin methods for steady-state problems.

mikeb
Download Presentation

Exploring Alternative Approaches to CFD

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Exploring Alternative Approaches to CFD Dimitri Mavriplis Dept.of Mechanical Engineering University of Wyoming Laramie, WY

  2. Workshop Statement • Barriers to Progressand Technology Drivers • Misguided Government and Industry Policies • NASA: No base R&D budget, mission/vehicle emphasis • Boeing: Lack of interest in technology/internal expertise • Dell Computer Corp. • Multiple Scales • Anisotropy, Solver Stiffness, Mesh Refinement, Turbulence • Software Complexity • MDO, multiphase flow front tracking, education

  3. Technology Drivers • High-Order Accuracy (Discontinuous Galerkin) • Attempt to mitigate multiple-scale issue • Large gains possible through more efficient approximations (temporal and spatial) • Requires efficient solvers to realize gains • More complex software • Low-Order Accuracy: Simpler Models (Lattice Boltzmann) • Simpler software • More complex physics: Mesoscales • Also requires efficient solvers

  4. CFD Accuracy for Drag Prediction (AIAA workshop results) • Current simulations suffer from : • Discretization errors • Physical Modeling errors • Apparently, one does not dominate the other (still)

  5. Apparently, one does not dominate the other (still) • Grid convergence (or lack thereof) from: AIAA-2003-3400: CFD Sensitivity Analysis of a Drag Prediction Wing/Body Transport Configuration, E.M. Lee-Rausch, P. G. Buning, J. H Morrison, M. A. Park, C. L. Rumsey and D. J Mavriplis

  6. Higher-Order Methods • Simple asymptotic arguments indicate benefit of higher-order discretizations • Most beneficial for: • High accuracy requirements • Smooth functions

  7. Motivation • Higher-order methods successes • Acoustics • Large Eddy Simulation (structured grids) • Other areas • High-order methods not demonstrated in: • Aerodynamics, Hydrodynamics • Unstructured mesh LES • Industrial CFD • Cost effectiveness not demonstrated: • Cost of discretization • Efficient solution of complex discrete equations

  8. Motivation • Discretizations well developed • Spectral Methods, Spectral Elements • Streamwise Upwind Petrov Galerkin (SUPG) • Discontinuous Galerkin • Most implementations employ explicit or semi-implicit time stepping • e.g. Multi-Stage Runge Kutta ( ) • Need efficient solvers for: • Steady-State Problems • Time-Implicit Problems ( )

  9. General Idea • Use element Jacobi as Smoother for p-multigrid solver (AIAA-2003-3989: Atkins, Helenbrook and Mavriplis) Solution of linear (2D) wave equation using 2 grid p-MG system for p=3 (Mavriplis and Atkins, 2002)

  10. Multigrid Solver for Euler Equations • Develop efficient solvers (O(N)) for steady-state and time-implicit high-order spatial discretizations • Discontinuous Galerkin • Well suited for hyperbolic problems • Compact-element-based stencil • Use of Riemann solver at inter-element boundaries • Reduces to 1st order finite-volume at p=0 • Natural extension of FV unstructured mesh techniques • Closely related to spectral element methods

  11. Discontinuous Galerkin (DG) Mass Matrix Spatial (convective or Stiffness) Matrix Element Based-Matrix Element-Boundary (Edge) Matrix

  12. Steady-State Solver • Kijui=0 (Ignore Mass matrix) • Block form of Kij: • Eij = Block Diagonals (coupling of all modes within an element) • Fij = 3 Block Off-Diagonals (coupling between neighboring elements) Solve iteratively as: Eij (ui n+1 – uin ) = Kij uin

  13. Steady-State Solver: Element Jacobi Solve iteratively as: Eij (ui n+1– uin) = Kij uin Duin+1 = E-1ij Kij uin Obtain E-1ij by Gaussian Elimination (LU Decomposition) 10X10 for p=3 on triangles

  14. DG for Euler Equations • Mach = 0.5 over 10% sin bump • Cubic basis functions (p=3), 4406 elements

  15. Entropy as Measure of Error • S  0.0 for exact solution • S is smaller for higher order accuracy

  16. Error Convergence for Bump Case • P=1: Final Slope: 1.26 • P=2: Final Slope: 2.8 • P=3: Final Slope: 3.2 • Based on L2 norm of entropy • H-convergence • 382 elements • 1500 elements • 2800 elements • 4406 elements

  17. Element Jacobi Convergence • P-Independent Convergence • H-dependence

  18. Improving Convergence H-Dependence • Requires implicitness between grid elements • Multigrid methods based on use of coarser meshes for accelerating solution on fine mesh

  19. Spectral Multigrid • Form coarse “grids” by reducing order of approximation on same grid • Simple implementation using hierarchical basis functions • When reach 1st order, agglomerate (h-coarsen) grid levels • Perform element Jacobi on each MG level

  20. Hierarchical Basis Functions • Low order basis functions are subset of higher order basis functions • Low order expansion (linear in 2D): • U= a1F1 + a2F2 + a3F3 • Higher order (quadratic in 2D) • U=a1F1 + a2F2 + a3F3 + a4F4 + a5F5 + a6F6 • To project high order solution onto low order space: • Set a4=0, a5=0, a6=0

  21. Hierarchical Basis on Triangles • Linear (p=1): F1=z1, F2=z2, F3=z3 • Quadratic (p=2): • F4=-0.5z1z2, F5=-0.5z2z3, F6=z3z1 • Cubic (p=3): F7=1/12z1z2(z1-z2), F8=1/12z2z3(z2-z3), F9=1/12z3z1(z3-z1), F10=z1z2z3

  22. Spectral Multigrid • Fine/Coarse Grids contain same elements • Transfer operators almost trivial for hierarchical basis functions • Restriction: Fine to Coarse • Transfer low order (resolvable) modes to coarse level exactly • Omit higher order modes • Prolongation: Coarse to Fine • Transfer low order modes exactly • Zero out higher order modes

  23. Euler Equations • System of Non-Linear Equations • Element Jacobi and Spectral MG Implemented for Euler Equations • FAS Multigrid (non-linear MG) • Possible tradeoffs using Linear MG • Requires storing entire Jacobian • Reduced cpu time (freeze Jacobian) • Bump and Airfoil Test Cases • Includes Curved Surface Elements • Necessary for maintaining accuracy

  24. Element Jacobi Convergence • P-Independent Convergence • H-dependence

  25. Multigrid Convergence • Nearly h-independent

  26. Future Multigrid Work • Reduced complexity of element Jacobi • Develop implicit time integration scheme • High-order time discretization • Multigrid driven implicit solver • H-P Adaptivity in Multigrid Context • Towards a General Multi-resolution Framework

  27. Using Alternate Models: The Lattice Boltzmann Approach • Lattice Boltzmann methods increasingly popular • Origins from Lattice Gas Automata (LGA) methods • LBM abandons particle formulation in favor of particle distribution function approach • Mesoscale Method (neither macro, nor molecular) • Shown to converge to Navier-Stokes equations in macroscopic limit • Facilitates physical modeling (and software complexity) • Front capturing in place of fitting • Physics incorporated at mesoscale level (collision term)

  28. Front Capturing with LBM • c/o M. Krafczyk, TU Braunschweig, Germany

  29. Governing Equations of Fluid Dynamics • Statistical Mechanics Description (Meso-Scale) • Boltzmann Equation (BGK approximation) • f=f(x, ,t): Distribution function in velocity space • = speed of gas molecules • Linear convection terms • Non-Linear Collision (source) term (local)

  30. Lattice Boltzmann • 9 velocity model: • Velocities allow exact jump to neighboring grid point • Proven mathematically to reduce to Navier-Stokes equations in asymptotic limit • Obtain macroscopic values as:

  31. 2 Step LBM Implementation • Implemented as Collision step followed by advection step (reminiscent of LGA method) • Collision step is entirely local : is a non-linear function of the • Advection: Shift in memory with no flops!

  32. Motivation • Formally: 2nd order accurate in space • Formally: 1st order accurate in time • Remarkable delivered accuracy in many cases • Numerically efficient • Local collision term • Linear convection term: shift operator with no flops! • Corresponds to explicit time-stepping approach • Notoriously inefficient solution strategy

  33. LBE for 2D Driven Cavity • Streamlines for 129 x 129 grid (Re=100)

  34. Solution of Steady-State LBE • 16,000 time steps to machine zero on 33x33 grid

  35. Solution of Steady-State LBE • 16,000 time steps to machine zero on 33x33 grid • 4 to 5 times slower on 129x129 grid

  36. Solution of Steady-State LBE • 16,000 time steps to machine zero on 33x33 grid • 4 to 5 times slower on 129x129 grid • Even slower on 513x513 grid

  37. Motivation • Develop efficient (optimal) solution strategies for LBE • LBE simplicity + Asymptotic efficiency • Steady-state problems • Decouple space and time • Preserve exact LBE spatial discretization • Obtain identical final result with faster solution method

  38. Steady-State LBE Discretization • Drop time-level index n: • In residual form: • Linearize and solve with Newton’s method: • Iterative inversion of Jacobian matrix using Jacobi, GG, Multigrid…

  39. Linear Multigrid Driven Newton Scheme • Efficiency of linear system • 150 multigrid cycles • Quadratic convergence of non-linear system

  40. Linear vs. Non-Linear Approach • Linearized LBE is expensive • Block 9x9 matrices for collision term • Looses efficient 2 step non-linear evaluation

  41. Operation Count • Linear system iteration (Jacobi): • 9x9 matrix-vector product: 2x9x9= 162 ops • Other terms : 63 ops • Total: 225 ops • Non-Linear LBE Time Step: • Macro variables: 18 ops • Collision: 75 ops • Advection: 0 ops • Total : 93 ops

  42. Non-Linear Multigrid Approach • Use LBE time-step to drive non-linear multigrid algorithm (non-linear equivalent of Jacobi) • Jacobi has poor smoothing properties • Implement non-linear under-relaxed Jacobi in 3 steps:

  43. Non-Linear Multigrid (FAS)

  44. Non-Linear Multigrid Approach • On coarse grids, need to include defect-correction : • Implement as modification to under-relaxation stage • Preserve first two steps • Implemented by calling existing LBE code on all grid levels

  45. Multigrid Cost • 1 MG cycle = 24 LBE steps • 4 pre-smoothing and 4 post-smoothing steps (factor 8) • Work of coarse grids (W-cycle in 2D: factor 2) • Remaining factor: 1.5: Under-relaxation, intergrid transfers • Memory Usage (factor 3) • 2 field arrays on fine grid (f + residuals) • Remainder is coarse grid variables (factor 1.5)

  46. Solution of Steady-State LBE • 16,000 time steps to machine zero on 33x33 grid • 4 to 5 times slower on 129x129 grid • Even slower on 513x513 grid

  47. Non-Linear Multigrid Solution of LBE • 2 to 3 orders of magnitude faster in terms of cycles • Multigrid cycle is 24 times cost of LBE time-step

  48. Non-Linear Multigrid Solution of LBE • Work unit: CPU time for 1 LBE time-step on relevant grid • MG 1 to 2 orders of magnitude more efficient • Benefit increases with finer grids • Asymptotic property of MG: O(N)

  49. Conclusions • Steady-state LBE can be solved efficiently O(N) using multigrid • Implemented by calling existing LBE code on each grid level • Plus defect correction and under-relaxation step • Better smoothers are available at the cost of decreased modularity • Linearizing LBE is a poor strategy • Destroys favorable operation count

  50. Future Challenges • For steady-state cases, apply known PDE strategies • Adaptive meshing • Adjoint solution techniques for MDO sensitivities • Simple (but costly) linearization • Extend steady-state solver to time-implicit solver • Exact convection (shift to neighbor) is lost • Effect on temporal accuracy (?)

More Related