250 likes | 395 Views
Consistent analysis of nuclear level structures and nucleon interaction data of Sn isotopes . J.Y. Lee 1* , E. Sh. Soukhovitskii 2 , Y. D. Kim 1 , R. Capote 3 , S. Chiba 4 , and J. M. Quesada 5 1 Dep. of Physics, Sejong University, Korea
E N D
Consistent analysis of nuclear level structures and nucleon interaction data of Sn isotopes J.Y. Lee1*, E. Sh. Soukhovitskii2, Y. D. Kim1, R. Capote3, S. Chiba4, and J. M. Quesada5 1Dep. of Physics, Sejong University, Korea 2Joint Institute for Energy and Nuclear Research, Belarus 3Nuclear Data Section, IAEA, Austria 4Advanced Science Research Center, JAEA, Japan 5Universidad de Sevilla, Spain * yeon@sejong.ac.kr
Why Study Tin Isotopes ? • A main component ofnuclear reactor material. • A candidate material forsuperconducting magnetsin fusion reactors. • Energy splittings of yrast 0+, 2+, 4+ and 6+ levels are irregular. ⇒may suggest non-harmonic vibrationalstates? • Sn isotopes are single-closed-shell nuclei of Z=50. determine whether the calculations using a self-consistent CC optical model may produce different nuclear deformations for different external probes (protons, neutrons) for Sn isotopes.
Present soft-rotator model - Lee et al., PRC 79, 064612 (‘09) - Soukhovitskii et al., PRC 72, 024604 (‘05) - Capote et al., PRC 72, 064610 (‘05) - Soukhovitskii et al., J. Physics G 30, 905(‘04) • Non-axial quadrupole, octupole, hexadecapole deformations • γ-vibrations • Soft-octupoleand rigid hexadecapole deformations Identify positive and negative parity bands, associated with octupole surface vibrations
Calculations i) NuclearHamiltonian parametersto reproduce experimental collective levels (determined by fitting the calculated levels to the evaluated nuclear structure data ) ii) Contruct wave functions from these parameters. iii) CC optical Model calculations ⇒“ Self-consistent ! ”
Present soft-rotator model ⇒ Quite successful in explaining • Nuclear collective level structures, • Nucleon interaction cross sections, • Proton non-elastic scattering cross sections, • γ -transition probabilities, for 12C, 28Si, 56Fe, 58Ni, & 238U. - Lee et al.,, PRC 79, 064612 (‘09) - Soukhovitskii et al, PRC 72, 024604 (‘05) - Capote et al, PRC 72, 064610 (‘05) - Soukhovitskii et al., J. Physics G 30, 905(‘04) - Soukhovitskii et al., J. Nucl. Sci. Tech. 40, 69 (‘03), - Soukhovitskii et al., PRC 62, 044605(‘00), NPA 624, 305 (‘98).
Goals Consistent description ofcollective nuclear level structures & nucleon scattering properties for 116,118,120Snusing the soft-rotator model. 50
Description of soft-rotator model ASSUME : An excited stateof even-even non-sphericalnucleus can be described as a combination of rotation, β-quadrupole and octupole vibrations, & γ-quadrupole vibration. Multipole-deformed instant nuclear shape Deformations
Description of soft-rotator model (Review) ASSUME : An excited stateof even-even non-sphericalnucleus can be described as a combination of rotation, β-quadrupole and octupole vibrations, & γ-quadrupole vibration. Multipole-deformed instant nuclear shape Deformations
ASSUME : is small. Deformed nuclear potential :
Isospin-dependent dispersive CC OMP • Soukhovitskii et al, PRC 72, 024604 (‘05) Capote et al, PRC 72, 064610 (‘05) Lane equations (“Lane consistent dispersive CC OMP”) • deal with (p,n) charge exchange reactions [to the elastic Isobaric Analogue States(IAS)]
Applications to Sn isotopes For120Sn(32.59%), 118Sn (24.22%), 116Sn (14.54%), • Collective nuclear level structures • Total neutron & proton reaction cross sections • Nucleon elastic & inelastic scattering cross sections [(n,n),(n,n’),(p,p), (p,p’)] • Quasi-elastic (p,n) reactions.
Collective level structures of 120Sn & 118Sn⇒All the levels are involved in CC calculations. EXP. CALCULATIONS EXP. CALCULATIONS (i) K≈0,nβ=nγ=0 (g.s. rotational band) (ii) K≈0,nβ=1,nγ=0 (iii) K≈2,nβ=0,nγ=0 (positive parity band) (iv) K≈0,nβ=0,nγ=0 (negative parity band) (v) K≈0,nβ=0,nγ=1
Neutron elastic scattering cross sections 116Sn(n,n) 118Sn(n,n) 120Sn(n,n)
Neutron inelastic scattering cross sections 116Sn(n,n’)2+118Sn(n,n‘)2+120Sn(n,n’)2+
Neutron inelastic scattering cross sections 116Sn(n,n’)3-118Sn(n,n‘)3-120Sn(n,n’)3-
Proton elastic scattering cross sections 116Sn(p,p) 118Sn(p,p) 120Sn(p,p)
Proton inelastic scattering cross sections 116Sn(p,p’)2+118Sn(p,p‘)2+120Sn(p,p’)2+
Proton inelastic scattering off 3- state 116Sn(p,p’)3- 118Sn(p,p‘)3-120Sn(p,p’)3-
Quasi-elastic (p,n) reactions 116Sn(p,n)118Sn(p,n) 120Sn(p,n)
Summary For 116Sn, 118Sn, 120Sn, • Collective level structures • Total neutron cross sections • Nucleon elastic/inelastic scattering cross sections • Quasi-elastic (p,n) reactions. ⇒ well described within the soft-rotator model self-consistently. [ χ2 : 6.882(116Sn), 8.369(118Sn), 6.74(120Sn) ]