1 / 21

Lesson 7-2

Lesson 7-2. Hard Trig Integrals. Strategies for Hard Trig Integrals. Type I: sin n x or cos n x , n is odd. Keep one sin x or cos x or for du Convert remainder with sin ² x + cos² x = 1 Using U substitution to get power rules. 7-2 Example 1. ∫ sin³ x dx.

millie
Download Presentation

Lesson 7-2

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lesson 7-2 Hard Trig Integrals

  2. Strategies for Hard Trig Integrals

  3. Type I: sinnx or cosnx, n is odd • Keep one sin x or cos x or for du • Convert remainder with sin²x + cos² x = 1 • Using U substitution to get power rules

  4. 7-2 Example 1 ∫ sin³ x dx = ∫ sin² x (sin x dx) Remove one sin x and combine with dx to form du Use Trig id: sin² x = 1 - cos² x to get the uⁿ du form = ∫ (1 – cos² x) (sin x dx) = ∫ sin x dx – ∫ cos² x (sin x dx) ) = ∫ sin x dx – (- 1) ∫ u² du = - cos x + ⅓ cos³ x + C Let u = cos x then du = -sin x

  5. 7-2 Example 2 ∫ cos5 xdx = ∫ cos4 x (cos x dx) Remove one cos x and combine with dx to form du Use Trig id: sin² x = 1 - cos² x to get the uⁿ du form =∫(1- sin2 x)2 (cos x dx) =∫(1- 2sin2 x + sin4 x) (cos x dx) let u = sin x and du = cos x dx mostly un du form = ∫(cos x dx) - 2 ∫ sin2 x (cos x dx) + ∫ sin4 x (cos x dx) = sin x – 2/3 sin3 x + 1/5 sin5 x + C

  6. Type 2: sinnx or cosnx, n is even • Use half angle formulas:  • sin² x = ½(1 - cos 2x) • cos² x = ½(1 + cos 2x) • Use form of cos u du

  7. 7-2 Example 3 ∫ sin² x dx = ∫ ½ (1 - cos 2x) dx Use double angle formulas: Sin2 x = ½(1 – cos 2x) Then use u = 2x and du = 2dx, so you need an extra ½ out front = ½∫ dx - ½∫ cos 2x dx = ½ x - ½(½ sin 2x)+ C = (¼) (2x – sin 2x) + C

  8. 7-2 Example 4 = ∫ cos4 x dx = ∫ (½(1 + cos 2x))² ∫ cos4 x dx Use double angle formulas: cos2 x = ½(1 + cos 2x) Twice on last term! Then use cos u du forms = ¼ ∫ (1 + 2cos 2x + cos2 2x)dx = ¼( ∫ dx + 2 ∫ cos 2x dx + ∫ cos2 2x dx) = ¼( ∫ dx + 2 ∫ cos 2x dx + ∫ ½(1 + cos 4x) dx) = ¼x + ¼sin 2x + (1/8)x + (1/8)(1/4) sin 4x + C = (3/8)x + ¼sin 2x + (1/32) sin 4x + C = ¼ (sin x cos³ x) + (3/8) sin x cos x + 3/8(x) + C Note: Calculators will use other trig IDs to simplify into a different form

  9. Type 3:sinmx • cosnx, n or m is odd • From odd power, keep one sin x or cosx, for du • Use identities to substitute • Convert remainder with sin²x + cos² x = 1 • With U-substitutions, use power rule

  10. 7-2 Example 5 ∫ sin³ x cos4 x dx = ∫ (1 – cos² x) (cos4 x) (sin x)dx = = -1 ∫ (cos4 x) (-sin x) dx – (- ∫(cos6 x) (-sin x) dx) let u = cos x and du = -sin x dx = - ∫ u4 du + ∫u6 du = (-1/5) u5 + (1/7) u7 + C = (-1/5) (cos5 x) + (1/7) (cos7 x) + C

  11. Type IV: sinm x • cosn x, n and m are even. •  Use half angle identities • sin² x = ½(1 - cos 2x) • cos² x = ½(1 + cos 2x)

  12. 7-2 Example 7 = ∫ (1/2) (1 – cos 2x) (1/2) (1 + cos 2x) dx ∫ sin² x cos² x dx Use ½ angle formulas = (1/4) ∫ (1 – cos2 2x) dx Have to use ½ angle formula again = (1/4) ∫ dx – (1/4)∫ (1/2)(1 - cos 4x) dx = (1/4) x – (1/8) x + (1/8) ∫ cos 4x dx = (1/8) x + (1/32) sin 4x + C (not similar to calculator answer!)

  13. Type V: tann x or cotn x • From power pull out tan2x or cot2 x and substitute cot2x = csc2x - 1or tan2x = sec2x – 1 • Sometimes it converts directly into u-substitution and the power rule;other times, this may have to be repeated several times

  14. 7-2 Example 7 = ∫ cot2 x (csc2 x – 1)dx ∫ cot4 x dx Use trig id to convert cot2 = ∫ cot2 x (csc2 x) dx – ∫ cot2 x dx First  is a u-sub power rule and second, we reapply step 1 = - ∫ u²du - ∫ (csc2 x – 1)dx = (-1/3)(cot3 x) + cot x + x + C

  15. 7-2 Example 8 ∫ tan5 x dx = ∫ tan3 x (sec2 x – 1)dx Use trig id to convert cot2 = ∫ tan3 x (sec2 x) dx – ∫ tan3 x dx First  is a u-sub power rule and second, we reapply step 1 = ∫ u3du - ∫ tan x(sec2 x – 1)dx = ∫ u3du - ∫ u du + ∫tan x dx = (1/4)(tan4 x) - (1/2)tan2 x - ln |cos x| + C

  16. Type VI:tanmx•secnx or cotmx •cscnx , where n is even • Pull out sec2x or csc2x for du • Convert rest using trig ids: • csc2x = cot2x+ 1 • sec2x = tan2x+ 1 • Use u-substitution and power rules

  17. 7-2 Example 9 = ∫ (tan-3/2 x) (tan2 + 1) (sec2 x) dx ∫ tan-3/2 x sec4 x dx = ∫ (tan1/2 x + tan-3/2 ) (sec2 x) dx Keep a sec2 for du and convert other using trig id = ∫ u1/2 du + ∫ u-3/2 du = (2/3)u3/2 – (2) u-1/2 + C = (2/3)tan3/2 x – (2)tan-1/2 x + C

  18. Trigonometric Reduction Formulas ∫ ∫ ∫ ∫ Remember the following integrals: (when n=1 in the above) ∫ tan x dx = ln |sec x| + C ∫ sec x dx = ln |sec x + tan x| + C

  19. 7-2 Example 10 ∫ sin² x dx = -(1/2) sin x cos x + (1/2) ∫dx = Using reduction formulas = (-1/2) sin x cos x + (1/2) x + C Use your calculator to check. Calculator uses the reduction formulas.

  20. 7-2 Example 11 ∫ tan5 x dx = (1/5-1)tan5-1 x + ∫ tan5-2 x dx Use trig reduction formula = (1/4) tan4 x + ∫ tan3 x dx Use trig reduction formula again = (1/4) tan4 x + (1/3-1)tan3-1 x + ∫ tan3-2 x dx = (1/4) tan4 x + (1/2)tan2 x + ∫ tan x dx = (1/4) tan4 x + (1/2)tan2 x + ln|sec x| + C

  21. Summary & Homework • Summary: • Hard Trig integrals can be solved • Homework: • pg 488-489, Day 1: 1, 2, 5, 9, 10 Day 2: 3, 7, 11, 14, 17

More Related