240 likes | 347 Views
Warm Up Section 4.5 Find x : 1. 2. 3. 4. 5. 6. x o. 32 o. x o. 70 o. x o. x. 12. 45 o. 100 o. x o. x o. Answers to Warm Up Section 4.5 Find x :
E N D
Warm Up Section 4.5 Find x: 1. 2. 3. 4. 5. 6. xo 32o xo 70o xo x 12 45o 100o xo xo
Answers to Warm Up Section 4.5 Find x: 1. 2. 3. 4. 5. 6. 32o 140o 90o xo 32o xo 70o xo x 12 45o 100o xo xo 40o 45o
Angles Formed byChords, Secants, and Tangents Section 4.5 Standard: MM2G3 bd Essential Question: How are properties of chords, tangents, and secants used to find angle measures?
Recall how arcs are related to central angles: arc = angle Ex. x = 65
Recall how an arc is related to its inscribed angle: angle = ½ arc arc = angle × 2 angle = arc ÷ 2 Ex . Ex . x = 80 x = 32
Y The measure of the angle formed by two chords that intersect inside a circle is equal to half the sum of the measures of the intercepted arcs. (Where is the vertex of the angle?) X 1 Z W angle = ½ (arc 1 + arc 2)
Example 1: If = 75o and = 45o, find m m1 = ½ (mRS + mPQ) m1 = ½(75o + 45o) m1 = ½(120o) m1 = 60o R Q 75o 45o 1 P S
Example 2 If and 80o , find m1 = ½ (mRS + mPQ) 55o = ½(80o + mPQ) 110o = (80o + mPQ) 30o = mPQ R Q 80o 55o P S
Try these with your partner: 3. 4. x° 80° x° 100° 20° xo = ½(80o + 20o) xo = ½(100o) xo = 50o 90o = ½(100o + xo) 180o = (100o+ xo) 80o = xo
70° 5. yo x° 40° yo = ½(70o + 40o) yo= ½(110o) yo = 55o xo = 180o – 55o = 125o
The measure of an angle formed by 2 secants, 2 tangents, or a secant and a tangent is half the difference of the measures of the intercepted arcs. (Where is the vertex of the angle?) The vertex is in the exterior of the circle!! angle = ½ (arc 1 – arc 2)
Example 6: If mDC = 100o and mEB = 40o, find mA. D E A B C 100o 40o mA = ½ (mDC – mEB) mA = ½(100o – 40o) mA = ½ (60o) mA = 30o
Example 7: If mW = 65o and mXZ = 70o, find mXVY Y Z W 70o 65o V mW = ½ (mXVY – mXZ) 65o = ½(mXVY – 70o) 130o = (mXVY – 70o) 200o = mXVY X
Example 8: If mQRS = 240o, find mQS and mP. S mQS = 360o – 240o = 120o R 120o 240o P mP = ½ (mQRS – mQS) mP = ½(240o – 120o) mP = ½ (120o) mP = 60o Q
Try these with your partner: 9. 10. x° 140° 230° 20o 80° x° 120° 130o xo = ½(230o – 130o) xo = ½ (100o) xo = 50o xo = ½(80o – 20o) xo = ½ (60o) xo = 30o
11. 12. 35° x° 30° x° 150° 50o 100° 35o = ½(150o – xo) 70o = (150o – xo) -80o = – xo 80o = xo xo = ½(50o – 30o) xo = ½ (20o) xo = 10o
SUMMARYThe key to finding angle and arc measures is asking yourself where the vertex of the angle is located.
x° 1 The vertex of the angle is located at the center of the circle. So, the angle is a central angle and is equal to the measure of the intercepted arc. m1 = xo
y° 3 x° The vertex of the angle is located in the interior of the circle and not at the center, so the measure of the angle is half the sum of the intercepted arcs. m3 = ½(xo + yo)
x° x° 2 2 The vertex of the angle is a point on the circle. So, the measure of the angle is one half the measure of the intercepted arc. m2 = ½ xo
x° x° x° y° y° y° 4 4 4 The vertex of the angle is located in the exterior of the circle and not at the center, so the measure of the angle is half the difference of the intercepted arcs. m4 = ½(xo –yo)
BE is a diameter of the circle with center O. AT is tangent to the circle at A. mAB = 80o, mBC = 20o, and mDE = 50o. 100o 10 E A 9 4 1 6 5 50o 3 O 2 80o D 8 7 B 20o C 110o
100o 10 E A 9 4 1 6 5 50o 3 O 2 80o D 8 7 B 20o C 110o 9. m1 = ½(80o) = 40o 10. m2 = ½(100o) = 50o 11. m3 = ½(80o+ 50o) = 65o 12. m4 = ½(100o– 50o) = 25o 13. m5 = ½(80o) = 40o 14. m6 = ½(180o) = 90o
100o 10 E A 9 4 1 6 5 50o 3 O 2 80o D 8 7 B 20o C 110o 15. m7 = ½(100o) = 50o 16. m8 = 20o 17. m9 = ½(50o) = 25o 18. m10 = ½(100o) = 50o