340 likes | 427 Views
SIGHAD03 Pisa, 8-10 October 2003. E lectric D ipole M oments of Fundamental Particles. Yannis K. Semertzidis Brookhaven National Lab. Motivation Experimental Techniques Prospects New Method Summary. +. T. -. +. -. P. -. +. A Permanent EDM Violates both T & P Symmetries:.
E N D
SIGHAD03 Pisa, 8-10 October 2003 Electric Dipole Moments of Fundamental Particles Yannis K. Semertzidis Brookhaven National Lab • Motivation • Experimental Techniques • Prospects • New Method • Summary
+ T - + - P - + A Permanent EDM Violates both T & P Symmetries: T-Violation CP-Violation (Could Explain Matter-Antimatter Asymmetry of Universe) CPT
EDM Searches are Excellent Probes of Physics Beyond the SM: SM: One CP-Violating Phase (CKM), Needs loops with all quark families for a non-zero result (Third Order Effect). No Coupling to r.h. Fermions • 42 CP-Violating Phases, Needs one loop for a non-zero result (First Order Effect). • There is Coupling to r.h. Fermions SUSY:
Current EDM Limits • Neutron: n (-7.0<dn<5.0)10-26e·cm (90%CL) PRL 82, 904 (1999) • Paramagnetic Atoms or Molecules, 205Tl: electron |de| < 1.610-27e·cm (90%CL) PRL 88, 071805 (2002) • Diamagnetic Atoms, 199Hg: |d(199Hg)| < 2.110-28e·cm (95%CL) PRL 86, 2505 (2001) • “More Theoretical Models have been killed by the EDM Experiments than any other Experimental Method”
Carrier Signal Small Signal + Compare the Zeeman Frequencies When E-field is Flipped: - Experimental Methods E
Current status of EDMs la Sauer neutron: d(muon) <710-19 d(proton) < 6 10-23 d(neutron) < 6 10-26 d(electron) <1.6 10-27 d(199Hg) < 2.1 10-28 d e.cm Electro- 10-20 magnetic electron: 10-22 10-24 Multi SUSY Higgs f ~ 1 10-28 f ~ a/p Left-Right 10-29 1960 1970 1980 1990 2010 2020 2030 2000
Future Prospects: • Neutron: Ultra-Cold Neutrons & Polarized 3He stored together in a superfluid 4He. 100-1000 within 5-years, S.K. Lamoreaux et al. • Electron: YbF Ultra-cold molecules. ~1000 within ~5-years, B.E. Sauer et al. • Electron: PbO*, ~1000 within 3-years, ~10 within 1-year, D. DeMille et al. It’s a Horse Race!
Where is the EDM? • Neutron? • Electron? • Muon (2nd Generation)? • T-odd Nuclear Forces (199Hg)? We don’t Know!
Muon and Deuteron Electric Dipole Moments in Storage Rings • Revolutionary New Way of Probing EDMs.
Momentum vector Spin vector Spin Precession in g-2 Ring(Top View) m
Momentum vector Spin vector Spin Precession in EDM Ring(Top View) m
Radial E-field to Cancel the g-2 Precession • Radial E-Field: The method works well for particles with small anomalous magnetic moment a, e.g. Muons (a = 0.0011), Deuterons (a = -0.143), etc.
Predictions in Specific Models 50 effect at 10-24 ecm Exp. Sensitivity! The predicted value for the electron is 10 times less than the current experimental limit.
Parameter Values of Muon EDM Experiment • Radial E-Field: • E=2MV/m • Dipole B-field:B ~ 0.25T , R ~ 10m • Muon Momentum: • Need NP2=1016 for 10-24e.cm. Muon EDM LOI: (http://www.bnl.gov/edm) to J-PARC, <one year of running. • F. Farley et al., hep-ex/0307006
Deuteron EDM Signal: • Radial E-Field: for γ~1 e.g. for ER = 3.5MV/m, d = 10-27e·cm; ωd = 0.4µrad/s
Sources of Deuteron Systematic Errors: • Out of Plane Electric Field • Tensor Polarization (not a Problem-Smaller is Better)
Effect of Vertical Component of E • Deuterons β=0.2, γ=1.02, ω=13105 θE rad/s
Effect of Vertical Component of E • Clock Wise and Counter-Clock Wise Injection: Background: Same Sign Signal: Opposite Sign • Protons β=0.15, γ=1.01, ω=115105 θE rad/s • Deuterons β=0.2, γ=1.02, ω= 13105 θE rad/s • Muons β=0.98, γ=5, ω= 2105 θE rad/s • Other Diagnostics Include Injecting Forward vs Backward Polarized Beams as well as Radially Pol.
Parameter Values of a Deuteron EDM Experiment • Radial E-Field: ER=3.5MV/m • Dipole B-field:B~0.13T; Ring Radius: R~32m • Deuteron Momentum: • YkS et al., hep/ex-0308063
Deuteron Statistical Error: p : Polarization Lifetime (Coherence Time) A : The left/right asymmetry observed by the polarimeter P : The beam polarization Nc: The total number of stored particles per cycle TTot: Total running time f : Useful event rate fraction ER : Radial electric field
Coherence Time Limitations: • E, B field stability • Multipoles of E, B fields • Vertical (Pitch) and Horizontal Oscillations • Finite Momentum Acceptance ΔP/P At this time we believe we can do p~3s
Deuteron Statistical Error: p : 3s. Polarization Lifetime (Coherence Time) A : 0.3. The left/right asymmetry observed by the polarimeter P : 0.55. The beam polarization Nc: 1011d/cycle. The total number of stored particles per cycle TTot: 107s. Total running time f : 0.1. Useful event rate fraction ER : 3.5MV/m. Radial electric field
Possible Locations for a Deuteron EDM Experiment: • Brookhaven National Laboratory • KVI/The Netherlands • Indiana University Cyclotron Facility Proposal Early Next Year…
Deuteron EDM to 10-27 ecm Sensitivity Level is 100 times better than 199Hg • T-odd Nuclear Forces:dd=210-22 ξ e·cm with the best limit for ξ<0.5 10-3 coming from the 199Hg EDM limit (Fortson, et al., PRL 2001), i.e. dd< 10-25 e·cm. (Sushkov, Flambaum, Khriplovich Sov. Phys. JETP, 60, p. 873 (1984) and Khriplovich and Korkin, Nucl. Phys. A665, p. 365 (2000)).
dd = dp + dn (I. Khriplovich) It Improves the Current Proton EDM Limit by a Factor of ~100,000 and a Factor 60-100 on Neutron.
Possible Improvements: • Higher ER Fields: 14MV/m with gas to slow down free electrons. • Longer Storage Time than 3s while Maintaining Polarization (Coherence Time).
We Need to Study • Target and Polarimetry (deuteron case) • E-field Directional Stability • Beam and Spin Dynamics
Summary Electric Dipole Moment Searches: • Exciting Physics, Forefront of SUSY Search. • Revolutionary New Way of Probing EDMs. • Sensitive EDM Experiments will bring the Next Breakthrough in Elementary Particle Physics.