1 / 34

E lectric D ipole M oments of Fundamental Particles

SIGHAD03 Pisa, 8-10 October 2003. E lectric D ipole M oments of Fundamental Particles. Yannis K. Semertzidis Brookhaven National Lab. Motivation Experimental Techniques Prospects New Method Summary. +. T. -. +. -. P. -. +. A Permanent EDM Violates both T & P Symmetries:.

milton
Download Presentation

E lectric D ipole M oments of Fundamental Particles

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. SIGHAD03 Pisa, 8-10 October 2003 Electric Dipole Moments of Fundamental Particles Yannis K. Semertzidis Brookhaven National Lab • Motivation • Experimental Techniques • Prospects • New Method • Summary

  2. + T - + - P - + A Permanent EDM Violates both T & P Symmetries: T-Violation CP-Violation (Could Explain Matter-Antimatter Asymmetry of Universe) CPT

  3. EDM Searches are Excellent Probes of Physics Beyond the SM: SM: One CP-Violating Phase (CKM), Needs loops with all quark families for a non-zero result (Third Order Effect). No Coupling to r.h. Fermions • 42 CP-Violating Phases, Needs one loop for a non-zero result (First Order Effect). • There is Coupling to r.h. Fermions SUSY:

  4.  la Fortson ~

  5. Current EDM Limits • Neutron: n (-7.0<dn<5.0)10-26e·cm (90%CL) PRL 82, 904 (1999) • Paramagnetic Atoms or Molecules, 205Tl: electron |de| < 1.610-27e·cm (90%CL) PRL 88, 071805 (2002) • Diamagnetic Atoms, 199Hg: |d(199Hg)| < 2.110-28e·cm (95%CL) PRL 86, 2505 (2001) • “More Theoretical Models have been killed by the EDM Experiments than any other Experimental Method”

  6. Carrier Signal Small Signal + Compare the Zeeman Frequencies When E-field is Flipped: - Experimental Methods E

  7.  la Fortson

  8.  la Fortson

  9.  la Fortson

  10. Current status of EDMs  la Sauer neutron: d(muon) <710-19 d(proton) < 6  10-23 d(neutron) < 6  10-26 d(electron) <1.6 10-27 d(199Hg) < 2.1 10-28 d e.cm Electro- 10-20 magnetic electron: 10-22 10-24 Multi SUSY Higgs f ~ 1 10-28 f ~ a/p Left-Right 10-29 1960 1970 1980 1990 2010 2020 2030 2000

  11. Future Prospects: • Neutron: Ultra-Cold Neutrons & Polarized 3He stored together in a superfluid 4He. 100-1000 within 5-years, S.K. Lamoreaux et al. • Electron: YbF Ultra-cold molecules. ~1000 within ~5-years, B.E. Sauer et al. • Electron: PbO*, ~1000 within 3-years, ~10 within 1-year, D. DeMille et al. It’s a Horse Race!

  12. Where is the EDM? • Neutron? • Electron? • Muon (2nd Generation)? • T-odd Nuclear Forces (199Hg)? We don’t Know!

  13. Muon and Deuteron Electric Dipole Moments in Storage Rings • Revolutionary New Way of Probing EDMs.

  14. Momentum vector Spin vector Spin Precession in g-2 Ring(Top View) m

  15. Momentum vector Spin vector Spin Precession in EDM Ring(Top View) m

  16. The muon spin precesses vertically (Side View)

  17. The muon spin precesses vertically (Side View)

  18. Radial E-field to Cancel the g-2 Precession • Radial E-Field: The method works well for particles with small anomalous magnetic moment a, e.g. Muons (a = 0.0011), Deuterons (a = -0.143), etc.

  19. Predictions in Specific Models 50 effect at 10-24 ecm Exp. Sensitivity! The predicted value for the electron is 10 times less than the current experimental limit.

  20. Parameter Values of Muon EDM Experiment • Radial E-Field: • E=2MV/m • Dipole B-field:B ~ 0.25T , R ~ 10m • Muon Momentum: • Need NP2=1016 for 10-24e.cm. Muon EDM LOI: (http://www.bnl.gov/edm) to J-PARC, <one year of running. • F. Farley et al., hep-ex/0307006

  21. Deuteron EDM Signal: • Radial E-Field: for γ~1 e.g. for ER = 3.5MV/m, d = 10-27e·cm; ωd = 0.4µrad/s

  22. Sources of Deuteron Systematic Errors: • Out of Plane Electric Field • Tensor Polarization (not a Problem-Smaller is Better)

  23. Effect of Vertical Component of E • Deuterons β=0.2, γ=1.02, ω=13105 θE rad/s

  24. Effect of Vertical Component of E • Clock Wise and Counter-Clock Wise Injection: Background: Same Sign Signal: Opposite Sign • Protons β=0.15, γ=1.01, ω=115105 θE rad/s • Deuterons β=0.2, γ=1.02, ω= 13105 θE rad/s • Muons β=0.98, γ=5, ω= 2105 θE rad/s • Other Diagnostics Include Injecting Forward vs Backward Polarized Beams as well as Radially Pol.

  25. Parameter Values of a Deuteron EDM Experiment • Radial E-Field: ER=3.5MV/m • Dipole B-field:B~0.13T; Ring Radius: R~32m • Deuteron Momentum: • YkS et al., hep/ex-0308063

  26. Deuteron Statistical Error: p : Polarization Lifetime (Coherence Time) A : The left/right asymmetry observed by the polarimeter P : The beam polarization Nc: The total number of stored particles per cycle TTot: Total running time f : Useful event rate fraction ER : Radial electric field

  27. Coherence Time Limitations: • E, B field stability • Multipoles of E, B fields • Vertical (Pitch) and Horizontal Oscillations • Finite Momentum Acceptance ΔP/P At this time we believe we can do p~3s

  28. Deuteron Statistical Error: p : 3s. Polarization Lifetime (Coherence Time) A : 0.3. The left/right asymmetry observed by the polarimeter P : 0.55. The beam polarization Nc: 1011d/cycle. The total number of stored particles per cycle TTot: 107s. Total running time f : 0.1. Useful event rate fraction ER : 3.5MV/m. Radial electric field

  29. Possible Locations for a Deuteron EDM Experiment: • Brookhaven National Laboratory • KVI/The Netherlands • Indiana University Cyclotron Facility Proposal Early Next Year…

  30. Deuteron EDM to 10-27 ecm Sensitivity Level is 100 times better than 199Hg • T-odd Nuclear Forces:dd=210-22 ξ e·cm with the best limit for ξ<0.5 10-3 coming from the 199Hg EDM limit (Fortson, et al., PRL 2001), i.e. dd< 10-25 e·cm. (Sushkov, Flambaum, Khriplovich Sov. Phys. JETP, 60, p. 873 (1984) and Khriplovich and Korkin, Nucl. Phys. A665, p. 365 (2000)).

  31. dd = dp + dn (I. Khriplovich) It Improves the Current Proton EDM Limit by a Factor of ~100,000 and a Factor 60-100 on Neutron.

  32. Possible Improvements: • Higher ER Fields: 14MV/m with gas to slow down free electrons. • Longer Storage Time than 3s while Maintaining Polarization (Coherence Time).

  33. We Need to Study • Target and Polarimetry (deuteron case) • E-field Directional Stability • Beam and Spin Dynamics

  34. Summary Electric Dipole Moment Searches: • Exciting Physics, Forefront of SUSY Search. • Revolutionary New Way of Probing EDMs. • Sensitive EDM Experiments will bring the Next Breakthrough in Elementary Particle Physics.

More Related