1 / 23

Identificazione ed organizzazione spazio-temporale degli aftershocks

Identificazione ed organizzazione spazio-temporale degli aftershocks. M. Bottiglieri, 1 E. Lippiello, 1 C. Godano 1 and L. de Arcangelis, 2 1 Department of Environmental Sciences and CNISM, Second University of Naples

milton
Download Presentation

Identificazione ed organizzazione spazio-temporale degli aftershocks

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Identificazione ed organizzazione spazio-temporale degli aftershocks M. Bottiglieri,1 E. Lippiello,1 C. Godano1 and L. de Arcangelis,2 1Department of Environmental Sciences and CNISM, Second University of Naples 2Department of Information Engineering and CNISM, Second University of Naples

  2. Se m(t)>mc comincia una sequenza Se m(t)<mc la sequenza finisce Identificazione delle sequenze preso Dt=ti-tj si definisce la quantità Cv=sDt/Dt 0 processiperiodici 1 processipoissoniani >>1

  3. Se nella finestra Cv=1 mp=1/Dte mp tasso poissoniano

  4. Generiamo dei cataloghi sintetici utilizzando sia il modello ETAS, sia un modello auto-similare basato su una ipotesi di scaling dinamico Lippiello, E., C. Godano and L. de Arcangelis (2007), DynamicalScaling in Branching ModelsforSeismicity, Phys. Rev. Lett., 98, 098501-04. Lippiello, E., M. Bottiglieri, C. Godano, and L. de Arcangelis (2007), Dynamicalscaling and generalizedOmorilaw, Geophys. Res. Lett., 34, L23301, doi:10.1029/2007GL030963. Lippiello, E., L. de Arcangelis, and C. Godano (2008), Inuenceoftime and spacecorrelationsonearthquakemagnitude, Phys. Rev. Lett., 100, 038501-04.

  5. mpsintetico 0.86 mp stimato 1.1

  6. T fissatomp1.6  2.1n fissatomp2.0  2.2mp= 2

  7. Baiesi M. and Paczuski M. (2004), Scale Free Network of Earthquakes and Aftershocks, Phys. Rev. E, 69, 066106. Felzer K. R. and E. E. Brodsky (2006), Decay of aftershock density with distance indicates triggering by dynamic stress, Nature, 441|8, 735-738.

  8. Dividiamo le nostre sequenze in classi di magnitudo del main e studiamo le distribuzioni delle interdistanze tra eventi consecutiviDr=ri-rjfissiamo una distanza massima dal main pari aL=150 km L=300 km L(M)=k10gM

  9. a=0.67bmain=0.5g=0.5d=(a-bmain)/g-10.6

  10. Conclusioni • definiamo un nuovo metodo per individuare le sequenze • esiste una scala caratteristica per le interdistanze • non esiste una scala caratteristica per gli intertempi

More Related