1 / 62

3NF and Boyce-Codd Normal Form

CS157A Lecture 15. 3NF and Boyce-Codd Normal Form. Prof. Sin-Min Lee Department of Computer Science San Jose State University. What it’s all about. Given a relation, R, and a set of functional dependencies, F, on R. Assume that R is not in a desirable form for enforcing F.

mimi
Download Presentation

3NF and Boyce-Codd Normal Form

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CS157A Lecture 15 3NF and Boyce-Codd Normal Form Prof. Sin-Min Lee Department of Computer Science San Jose State University

  2. What it’s all about • Given a relation, R, and a set of functional dependencies, F, on R. • Assume that R is not in a desirable form for enforcing F. • Decompose relation R into relations, R1,..., Rk, with associated functional dependencies, F1,..., Fk, such that R1,..., Rk are in a more desirable form, 3NF or BCNF. • While decomposing R, make sure to preserve the dependencies, and make sure not to lose information.

  3. FLT-SCHEDULE flt# weekday airline dtime from atime to DL242 MO WE FR DELTA 10:40 ATL 12:30 BOS SK912 SA SU SAS 12:00 CPH 15:30 JFK AA242 MO FR AA 08:00 CHI 10:10 ATL FLT-SCHEDULE flt# weekday airline dtime from atime to DL242 MO DELTA 10:40 ATL 12:30 BOS DL242 WE DELTA 10:40 ATL 12:30 BOS DL242 FR DELTA 10:40 ATL 12:30 BOS SK912 SA SAS 12:00 CPH 15:30 JFK SK912 SU SAS 12:00 CPH 15:30 JFK AA242 MO AA 08:00 CHI 10:10 ATL AA242 FR AA 08:00 CHI 10:10 ATL Primitive Domains Attributes must be defined over domains with atomic values

  4. FLIGHTS flt# date airline plane# DL242 10/23/00 Delta k-yo-33297 DL242 10/24/00 Delta t-up-73356 DL242 10/25/00 Delta o-ge-98722 AA121 10/24/00 American p-rw-84663 AA121 10/25/00 American q-yg-98237 AA411 10/22/00 American h-fe-65748 Bad Database Design- redundancy of fact • redundancy: airline name repeated for same flight • inconsistency: when airline name for a flight changes, it must be changed many places

  5. FLIGHTS flt# date airline plane# DL242 10/23/00 Delta k-yo-33297 DL242 10/24/00 Delta t-up-73356 DL242 10/25/00 Delta o-ge-98722 AA121 10/24/00 American p-rw-84663 AA121 10/25/00 American q-yg-98237 AA411 10/22/00 American h-fe-65748 Bad Database Design- fact clutter • insertion anomalies: how do we represent that SK912 is flown by Scandinavian without there being a date and a plane assigned? • deletion anomalies: cancelling AA411 on 10/22/00 makes us lose that it is flown by American. • update anomalies: if DL242 is flown by Sabena, we must change it everywhere.

  6. FLIGHTS flt# date airline plane# DL242 10/23/00 Delta k-yo-33297 DL242 10/24/00 Delta t-up-73356 DL242 10/25/00 Delta o-ge-98722 AA121 10/24/00 American p-rw-84663 AA121 10/25/00 American q-yg-98237 AA411 10/22/00 American h-fe-65748 FLIGHTS-AIRLINE DATE-AIRLINE-PLANE flt# airline date airline plane# DL242 Delta AA121 American AA411 American 10/23/00 Delta k-yo-33297 10/24/00 Delta t-up-73356 10/25/00 Delta o-ge-98722 10/24/00 American p-rw-84663 10/25/00 American q-yg-98237 10/22/00 American h-fe-65748 Bad Database Design- information loss

  7. FLIGHTS-AIRLINE DATE-AIRLINE-PLANE flt# airline date airline plane# DL242 Delta AA121 American AA411 American 10/23/00 Delta k-yo-33297 10/24/00 Delta t-up-73356 10/25/00 Delta o-ge-98722 10/24/00 American p-rw-84663 10/25/00 American q-yg-98237 10/22/00 American h-fe-65748 FLIGHTS flt# date airline plane# DL242 10/23/00 Delta k-yo-33297 DL242 10/24/00 Delta t-up-73356 DL242 10/25/00 Delta o-ge-98722 AA121 10/24/00 American p-rw-84663 AA121 10/25/00 American q-yg-98237 AA211 10/22/00 American h-fe-65748 AA411 10/24/00 American p-rw-84663 AA411 10/25/00 American q-yg-98237 AA411 10/22/00 American h-fe-65748 Bad Database Design- information loss • information loss: we polluted the database with false facts; we can’t find the true facts.

  8. FLIGHTS-AIRLINE DATE-AIRLINE-PLANE flt# airline date airline plane# DL242 Delta AA121 American AA411 American 10/23/00 Delta k-yo-33297 10/24/00 Delta t-up-73356 10/25/00 Delta o-ge-98722 10/24/00 American p-rw-84663 10/25/00 American q-yg-98237 10/22/00 American h-fe-65748 Bad Database Design- dependency loss • dependency loss: we lost the fact that (flt#, date) ® plane#

  9. FLIGHTS-DATE-PLANE flt# date plane# FLIGHTS-AIRLINE DL242 10/23/00 k-yo-33297 DL242 10/24/00 t-up-73356 DL242 10/25/00 o-ge-98722 AA121 10/24/00 p-rw-84663 AA121 10/25/00 q-yg-98237 AA411 10/22/00 h-fe-65748 flt# airline DL242 Delta AA121 American AA411 American Good Database Design • no redundancy of FACT (!) • no inconsistency • no insertion, deletion or update anomalies • no information loss • no dependency loss

  10. X Y Functional Dependencies and Keys Let X and Y be sets of attributes in R • Y is functionally dependent on X in R iff for each x Î R.X there is precisely one yÎ R.Y • Y is fully functional dependent on X in R if Y is functional dependent on X and Y is not functional dependent on any proper subset of X • We use keys to enforce functional dependencies in relations: X ® Y

  11. FLIGHTS flt# date airline plane# FLIGHTS flt# date airline plane# FLIGHTS flt# date airline plane# Functional Dependencies and Keys the FLIGHT relation will not allow the FDs to be enforced by keys plane# is not determined by flt# alone airline is not determined by flt# and date

  12. cust# name address cust# name address cust# name address cust# name address cust# name address Functional Dependencies and Keys real world database name address Consider the meaning separate combined

  13. How to Compute Meaning- Armstrong’s inference rules Rules of the computation: • reflexivity: if YÍ X, then X®Y • Augmentation: if X®Y, then WX®WY • Transitivity: if X®Y and Y®Z, then X®Z Derived rules: • Union: if X®Y and X®Z, the X®YZ • Decomposition: if X®YZ, then X®Y and X®Z • Pseudotransitivity: if X®Y and WY®Z, then XW®Z Armstrong’s Axioms: • sound • complete

  14. Overview of NFs NF2 1NF 2NF 3NF BCNF

  15. Normal Forms- definitions • NF: non-first normal form • 1NF: R is in 1NF. iff all domain values are atomic2 • 2NF: R is in 2. NF. iff R is in 1NF and every nonkey attribute is fully dependent on the key • 3NF: R is in 3NF iff R is 2NF and every nonkey attribute is non-transitively dependent on the key • BCNF: R is in BCNF iff every determinant is a candidate key • Determinant: an attribute on which some other attribute is fully functionally dependent.

  16. FLT-INSTANCE flt# date plane# airline from to miles airline flt# from plane# date to miles Example of Normalization

  17. airline flt# from plane# date to miles airline flt# flt# from plane# date to miles airline flt# from to flt# plane# from date to miles Example of Normalization 1NF: 2NF: 3NF & BCNF:

  18. R A B C A C B R1 R2 C B A C 3NF that is not BCNF Candidate keys: {A,B} and {A,C} Determinants: {A,B} and {C} A decomposition: Lossless, but not dependency preserving!

  19. When a relation has more than one candidate key, anomalies may result even though the relation is in 3NF. • 3NF does not deal satisfactorily with the case of a relation with overlapping candidate keys • i.e. composite candidate keys with at least one attribute in common. • BCNF is based on the concept of a determinant. • A determinant is any attribute (simple or composite) on which some other attribute is fully functionally dependent. • A relation is in BCNF is, and only if, every determinant is a candidate key.

  20. The theory • Consider the following relation and determinants. Example 1. Given R(a,b,c,d) a,c -> b,d a,d -> b • To be in BCNF, all valid determinants must be a candidate key. In the relation R, a,c->b,d is the determinate used, so the first determinate is fine. • Example 2. If {a, b} is not a key, a,d->b suggests that a,d can be the primary key, which would determine b. However this would not determine c. This is not a candidate key, and thus R is not in BCNF.

  21. Example 1

  22. Two possible keys • DB(Patno,PatName,appNo,time,doctor) • Determinants: • Patno -> PatName • Patno,appNo -> Time,doctor • Time -> appNo • Two options for 1NF primary key selection: • DB(Patno,PatName,appNo,time,doctor) (example 1a) • DB(Patno,PatName,appNo,time,doctor) (example 1b)

  23. Example 1a • DB(Patno,PatName,appNo,time,doctor) • No repeating groups, so in 1NF • 2NF – eliminate partial key dependencies: • DB(Patno,appNo,time,doctor) • R1(Patno,PatName) • 3NF – no transient dependences so in 3NF • Now try BCNF.

  24. BCNF Every determinant is a candidate key DB(Patno,appNo,time,doctor)R1(Patno,PatName) • Is determinant a candidate key? • Patno -> PatNamePatno is present in DB, but not PatName, so irrelevant.

  25. Continued… DB(Patno,appNo,time,doctor)R1(Patno,PatName) • Patno,appNo -> Time,doctorAll LHS and RHS present so relevant. Is this a candidate key? Patno,appNo IS the key, so this is a candidate key. • Time -> appNoTime is present, and so is appNo, so relevant. Is this a candidate key? If it was then we could rewrite DB as: DB(Patno,appNo,time,doctor)This will not work, so not BCNF.

  26. Rewrite to BCNF • DB(Patno,appNo,time,doctor)R1(Patno,PatName) • BCNF: rewrite to DB(Patno,time,doctor) R1(Patno,PatName) R2(time,appNo) • time is enough to work out the appointment number of a patient. Now BCNF is satisfied, and the final relations shown are in BCNF

  27. Example 1b • DB(Patno,PatName,appNo,time,doctor) • No repeating groups, so in 1NF • 2NF – eliminate partial key dependencies: • DB(Patno,time,doctor) • R1(Patno,PatName) • R2(time,appNo) • 3NF – no transient dependences so in 3NF • Now try BCNF.

  28. BCNF Every determinant is a candidate key DB(Patno,time,doctor) R1(Patno,PatName) R2(time,appNo) • Is determinant a candidate key? • Patno -> PatNamePatno is present in DB, but not PatName, irrelevant. • Patno,appNo -> Time,doctorNot all LHS present so not relevant • Time -> appNoTime is present, but not appNo, so not relevant. • Relations are in BCNF.

  29. Summary - Example 1 This example has demonstrated three things: • BCNF is stronger than 3NF, relations that are in 3NF are not necessarily inBCNF • BCNF is needed in certain situations to obtain full understanding of the data model • there are several routes to take to arrive at the same set of relations in BCNF. • Unfortunately there are no rules as to which route will be the easiest one to take.

  30. Example 2 Grade_report(StudNo,StudName,(Major,Adviser, (CourseNo,Ctitle,InstrucName,InstructLocn,Grade))) • Functional dependencies • StudNo -> StudName • CourseNo -> Ctitle,InstrucName • InstrucName -> InstrucLocn • StudNo,CourseNo,Major -> Grade • StudNo,Major -> Advisor • Advisor -> Major

  31. Example 2 cont... • UnnormalisedGrade_report(StudNo,StudName,(Major,Advisor, (CourseNo,Ctitle,InstrucName,InstructLocn,Grade))) • 1NF Remove repeating groups • Student(StudNo,StudName) • StudMajor(StudNo,Major,Advisor) • StudCourse(StudNo,Major,CourseNo, Ctitle,InstrucName,InstructLocn,Grade)

  32. Example 2 cont... • 1NFStudent(StudNo,StudName)StudMajor(StudNo,Major,Advisor)StudCourse(StudNo,Major,CourseNo, Ctitle,InstrucName,InstructLocn,Grade) • 2NF Remove partial key dependenciesStudent(StudNo,StudName)StudMajor(StudNo,Major,Advisor)StudCourse(StudNo,Major,CourseNo,Grade)Course(CourseNo,Ctitle,InstrucName,InstructLocn)

  33. Example 2 cont... • 2NFStudent(StudNo,StudName)StudMajor(StudNo,Major,Advisor)StudCourse(StudNo,Major,CourseNo,Grade)Course(CourseNo,Ctitle,InstrucName,InstructLocn) • 3NF Remove transitive dependenciesStudent(StudNo,StudName)StudMajor(StudNo,Major,Advisor)StudCourse(StudNo,Major,CourseNo,Grade)Course(CourseNo,Ctitle,InstrucName)Instructor(InstructName,InstructLocn)

  34. Example 2 cont... • BCNF Every determinant is a candidate key • Student : only determinant is StudNo • StudCourse: only determinant is StudNo,Major • Course: only determinant is CourseNo • Instructor: only determinant is InstrucName • StudMajor: the determinants are • StudNo,Major, or • Advisor Only StudNo,Major is a candidate key.

  35. Example 2: BCNF • BCNFStudent(StudNo,StudName)StudCourse(StudNo,Major,CourseNo,Grade)Course(CourseNo,Ctitle,InstrucName)Instructor(InstructName,InstructLocn)StudMajor(StudNo,Advisor)Adviser(Adviser,Major)

  36. Problems BCNF overcomes • If the record for student 456 is deleted we lose not only information on student 456 but also the fact that DARWIN advises in BIOLOGY • we cannot record the fact that WATSON can advise on COMPUTING until we have a student majoring in COMPUTING to whom we can assign WATSON as an advisor.

  37. Split into two tables In BCNF we have two tables

  38. Returning to the ER Model • Now that we have reached the end of the normalisation process, you must go back and compare the resulting relations with the original ER model • You may need to alter it to take account of the changes that have occurred during the normalisation process Your ER diagram should always be a prefect reflection of the model you are going to implement in the database, so keep it up to date! • The changes required depends on how good the ER model was at first!

  39. Video Library Example • A video library allows customers to borrow videos. • Assume that there is only 1 of each video. • We are told that: video(title,director,serial)customer(name,addr,memberno)hire(memberno,serial,date) title->director,serial serial->title serial->director name,addr -> memberno memberno -> name,addr serial,date -> memberno

  40. What NF is this? • No repeating groups therefore at least 1NF • 2NF – A Composite key exists:hire(memberno,serial,date) • Can memberno be found with just serial or date? • NO, therefore the relations are already in 2NF. • 3NF?

  41. Test for 3NF • video(title,director,serial) • title->director,serial • serial->director • Director can be derived using serial, and serial and director are both non keys, so therefore this is a transitive or non-key dependency. • Rewrite video…

  42. Rewrite for 3NF • video(title,director,serial) • title->director,serial • serial->director • Becomes: • video(title,serial) • serial(serial,director)

  43. Check BCNF • Is every determinant a candidate key? • video(title,serial) - Determinants are: • title->director,serial Candidate key • serial->title Candidate key • video in BCNF • serial(serial,director) Determinants are: • serial->director Candidate key • serial in BCNF

  44. customer(name,addr,memberno) Determinants are: • name,addr -> memberno Candidate key • memberno -> name,addr Candidate key • customer in BCNF • hire(memberno,serial,date) Determinants are: • serial,date -> memberno Candidate key • hire in BCNF • Therefore the relations are also now in BCNF.

More Related