230 likes | 352 Views
Earth and super-Earth Atmospheres. Dimitar Sasselov Harvard-Smithsonian Center for Astrophysics & Harvard Origins of Life Initiative. Outline. The ‘generic’ terrestrial planet. The ‘mini-Neptune’ problem Characterizing geochemical cycles. The “Tree of super-Earths”. ?. Fe -rich mantle.
E N D
Earth and super-Earth Atmospheres Dimitar Sasselov Harvard-Smithsonian Center for Astrophysics & Harvard Origins of Life Initiative
Outline The ‘generic’ terrestrial planet The ‘mini-Neptune’ problem Characterizing geochemical cycles
The “Tree of super-Earths” ? Fe -rich mantle Terrestrial Planets / Dry, Rocky Planets ? ? H2O -rich mantle ? Super-Earths Ocean Planets / Water Planets ? Mini-Neptunes (Sasselov, 2008, Nantes)
Earth & super-Earths vs. gas & ice giants atmosphere Matm << Mp fluxes Loss UV / photo-chemistry mantle surface / phase transition / boundary layer a well-mixed reservoir
The “Tree of super-Earths” ? Fe -rich mantle Terrestrial Planets / Dry, Rocky Planets ? ? H2O -rich mantle ? Super-Earths Ocean Planets / Water Planets ? Mini-Neptunes (Sasselov, 2008, Nantes)
Super-Earths vs.mini-Neptunes “Confusion region”
How to distinguish mini-Neptune from super-Earth: (Miller-Ricci, Seager, Sasselov 2009)
How to distinguish mini-Neptune from super-Earth: < The 3 types of atmospheres Zoomed (Miller-Ricci, Seager, Sasselov 2009)
Super-Earths geochemistry, e.g. the Carbonate-silicate cycle, orSulfur cycle, etc. Planets of different initial conditions can be “driven” to a set of geochemical equilibria by global geo-cycles over geological timescales.
Dominant Sulfur outgasing: with JWST SO2 CO2 No O2 or O3 , but N2 , CO2 , & CH4 . Kaltenegger & Sasselov (2009)
Conclusions • Understanding the bulk geochemistry of Earth-like • planets is an achievable goal, • Use super-Earths as good proxies for Earth, • Much preparatory theory work still needed, e.g.: • Does the Sulfur (SO2) cycle have a stabilizing feedback; • What is the full catalog of possible geo-cycles, incl. on water planets (convecting Ice VII mantle); • Understand scaling of plate tectonics with mass.
The “Tree of super-Earths” ? Kepler Legacy Fe -rich mantle Terrestrial Planets / Dry, Rocky Planets ? ? H2O -rich mantle ? Super-Earths Ocean Planets / Aqua Planets TESS & JWST Legacy ? Mini-Neptunes
Interior Structure: Radius & Composition Valencia, Sasselov, O’Connell (2007)
Pure Iron super-Earths ? - No. - giant impacts simulations 70% Fe core: only below 4-5 MEarth Marcus, Sasselov, Hernquist, & Stewart (2009)
Water super-Earths vs. Dry 3 2 1 CoRoT-7b 1 5 10 20 Zeng & Sasselov (2009)
HARPS-NEF Front-end The 4.2-m William Herschel telescope, Canary Islands 1m/s in 1h for V=12 Thermal enclosures of the spectrograph
HARPS Front-end The 4.2-m William Herschel telescope, Canary Islands Thermal enclosures of the spectrograph
HARPS Thermal enclosures of the spectrograph
A laser comb for HARPS-NEFwavelength calibration • narrow lines • coherent• equally-spaced• intense• spans optical octave Mode-lockedfemtosecond laser: essentially a 10-15s ‘strobe’ Our red astro-comb in the lab. Li et al. 2008 nm