1 / 24

Two-way Analysis of Three-way Data

Two-way Analysis of Three-way Data. Two-way Analysis of Two-way Data. Y. X. D. =. D = X Y. 23. Two-way Analysis of Two-way Data. Y. z. X. D. =. D = X Q Y. 22. Three-way Data. D 3. D. D 2. D 1. 21. Structure of three way data. Y 1. z 1. D 1. X 1. =.

minda
Download Presentation

Two-way Analysis of Three-way Data

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Two-way Analysis of Three-way Data

  2. Two-way Analysis of Two-way Data Y X D = D = X Y 23

  3. Two-way Analysis of Two-way Data Y z X D = D = X Q Y 22

  4. Three-way Data D3 D D2 D1 21

  5. Structure of three way data Y1 z1 D1 X1 = D1 = X1 Q1 Y1 Y2 z2 D2 X2 = D2 = X2 Q2 Y2 Y3 z3 D2 X3 = D3 = X3 Q3 Y3 20

  6. Trilinearity D2 D1 D3 Rank = r1 D1 D2 Rank = r2 D3 19

  7. Similar X matrices Y1 z1 D1 X1 = D1 = X1 Q1 Y1 Y2 z2 D2 X2 = D2 = X2 Q2 Y2 Y3 z3 D2 X3 = D3 = X3 Q3 Y3 18

  8. Row wise augmented MCR D2 D1 D3 = Y2 Y1 z2 z1 X1 Y3 z3 Q1Y1 Q2Y2 Q3Y3 X1 = 17

  9. Similar Y matrices z1 Y1 X1 D1 = D1 = X1 Q1 Y1 z2 Y2 X2 D2 = D2 = X2 Q2 Y2 z3 Y3 X3 D2 = D3 = X3 Q3 Y3 16

  10. Column wise augmented MCR Y1 z1 D1 X1 z2 D2 = X2 z3 D3 Y1 X3 Q1X1 = Q2X2 Q3X3 15

  11. Similar X and Y matrices z1 Y1 X1 D1 = D1 = X1 Q1 Y1 z2 Y2 X2 D2 = D2 = X2 Q2 Y2 z3 Y3 X3 D2 = D3 = X3 Q3 Y3 14

  12. Row wise or column wise augmented MCR D2 D1 D3 = Q1Y1 Q2Y2 Q3Y3 X1 Y1 D1 Q1X1 D2 = Q2X2 D3 Q3X3 13

  13. Trilinearity constraint Y1 D1 Q1X1 D2 = Q2X2 D3 Q3X3 PCA 12

  14. Different X and Y matrices Y1 z1 D1 X1 = D1 = X1 Q1 Y1 Y2 z2 D2 X2 = D2 = X2 Q2 Y2 Y3 z3 D2 X3 = D3 = X3 Q3 Y3 11

  15. Column wise augmented MCR Y1 D1 Q1X1 Y2 D2 = Q2X2 Y3 D3 Q3X3 10

  16. Row wise augmented MCR D2 D1 D3 = Q1X1 Q3X3 Q2X2 Y1 Y2 Y3 9

  17. PARAFAC model Z Y X D = = D2 D1 D3 M1 M2 M3 X 8

  18. PARAFAC model Z Y X D = Y D1 N1 N2 D2 = D3 N3 7

  19. PARAFAC model Z Y X D = D1 D2 D3 D4 = Z P1 P2 P3 P4 6

  20. Reconstruction of kth slice of a three-way array p n D m PARAFAC n c c n Y zk Dk X = c c m m 5

  21. Reconstruction of kth slice of a three-way array p n D m PARAFAC2 n c c n Y zk Dk Xk = c c m m X1X1T = X2X2T = … = XkXkT 4

  22. Reconstruction of kth slice of a three-way array p n D m TUCKER3 n r n c Y Mk Dk X = c r m m 3

  23. Conclusions: MCR-ALS is a quite adaptable method for different kinds of non-trilinear data sets. MCR-ALS with trilinearity constraint is equivalent to PARAFAC. MCR-ALS is conceptually simple, can constrain all modes and works satisfactorily in a large variety of situations. When a data set presents a PARAFAC2 structure, this method can provide unique solutions. MCR-ALS is the preferred option to deal with non-trilinear data sets. 2

  24. Further studies: Comparison of three-way resolution methods for non-trilinear chemical data sets Anna de Juan, Roma Tauler J. Chemometrics, 2001, 15, 749-772. Comparison of different multiway methods for the analysis of geographical metal distributions in fish, sediments and river water ibCatolonia Emma Pere-Trepat, Antonio Ginebreda, Roma Tauler. Chemom. Intel. Lab. Syst., 2007, 88, 69-83. On rotational ambiguity in parallel factor analysis H. Abdollahi, S.M. Sajjadi Chemom. Intel. Lab. Syst., 2010, 103, 144-151. 1

More Related