180 likes | 303 Views
Advanced MDP Topics. Ron Parr Duke University. Value Function Approximation. Why? Duality between value functions and policies Softens the problems State spaces are too big Many problems have continuous variables “Factored” (symbolic) representations don’t always save us How
E N D
Advanced MDP Topics Ron Parr Duke University
Value Function Approximation • Why? • Duality between value functions and policies • Softens the problems • State spaces are too big • Many problems have continuous variables • “Factored” (symbolic) representations don’t always save us • How • Can tie in to vast body of • Machine learning methods • Pattern matching (neural networks) • Approximation methods
Implementing VFA • Can’t represent V as a big vector • Use (parametric) function approximator • Neural network • Linear regression (least squares) • Nearest neighbor (with interpolation) • (Typically) sample a subset of the the states • Use function approximation to “generalize”
Basic Value Function Approximation Idea: Consider restricted class of value functions resample? Subset of states VI FA V0 V*? Alternate value iteration with supervised learning
VFA Outline 1. Initialize V0(s,w0), n=1 2. Select some s0…si 3. For each sj 4. Compute Vn(s,wn) by training w on 5. n := n+1 6. Unless Vn+1-Vn<e goto 2 If supervised learning error is “small”, then Vfinal “close” to V*.
Stability Problem Problem: Most VFA methods are unstable s2 s1 No rewards, g = 0.9: V* = 0 Example: Bertsekas & Tsitsiklis 1996
Least Squares Approximation Restrict V to linear functions: Find q s.t. V(s1) = q, V(s2) = 2q V(x) s1 s2 S Counterintuitive Result: If we do a least squares fit of q qt+1 = 1.08 qt
Unbounded Growth of V V(x) n 1 2 S
What Went Wrong? • VI reduces error in maximum norm • Least squares (= projection) non-expansive in L2 • May increase maximum norm distance • Grows max norm error at faster rate than VI shrinks it • And we didn’t even use sampling! • Bad news for neural networks… • Success depends on • sampling distribution • pairing approximator and problem
Success Stories - Linear TD • [Tsitsiklis & Van Roy 96, Bratdke & Barto 96] • Start with a set of basis functions • Restrict V to linear space spanned by bases • Sample states from current policy Space of true value functions P = Projection VI Restricted Linear Space N.B. linear is still expressive due to basis functions
Linear TD Formal Properties • Use to evaluate policies only • Converges w.p. 1 • Error measured w.r.t. stationary distribution • Frequently visited states have low error • Infrequent states can have high error
Linear TD Methods • Applications • Inventory control: Van Roy et al. • Packet routing: Marbach et al. • Used by Morgan Stanley to value options • Natural idea: use for policy iteration • No guarantees • Can produce bad policies for trivial problems [Koller & Parr 99] • Modified for better PI: LSPI [Lagoudakis & Parr 01] • Can be done symbolically [Koller & Parr 00] • Issues • Selection of basis functions • Mixing rate of process - affects k, speed
Success Story: Averagers [Gordon 95, and others…] • Pick set, Y=y1…yi of representative states • Perform VI on Y • For x not in Y, • Averagers are non expansions in max norm • Converge to within 1/(1-g) factor of “best”
Interpretation of Averagers y1 b1 b2 x y2 b3 y3
Interpretation of Averagers II Averagers Interpolate: y1 y2 Grid vertices = Y x y4 y3
General VFA Issues • What’s the best we can hope for? • We’d like to get approximate close to • How does this relate to • In practice: • We are quite happy if we can prove stability • Obtaining good results often involves an iterative process of tweaking the approximator, measuring empirical performance, and repeating…
Why I’m Still Excited About VFA • Symbolic methods often fail • Stochasticity increases branching factor • Many trivial problems have no exploitable structure • “Bad” value functions can have good performance • We can bound “badness” of value functions • By simulation • Symbolically in some cases [Koller & Parr 00; Guestrin, Koller & Parr 01; Dean & Kim 01] • Basis function selection can be systematized
Hierarchical Abstraction • Reduce problem in to simpler subproblems • Chain primitive actions into macro-actions • Lots of results that mirror classical results • Improvements dependent on user-provided decompositions • Macro-actions great if you start with good macros • See Dean & Lin, Parr & Russell, Precup, Sutton & Singh, Schmidhuber & Weiring, Hauskrecht et al., etc.