300 likes | 413 Views
Issues for analyzing competing-risks data with missing or misclassification in causes. Dr. Ronny Westerman Institute of Medical Sociology and Social Medicine Medical School & University Hospital. July 27, 2012. Introduction. Background. Data and Methods. Results. Discussion.
E N D
Issues for analyzing competing-risks data with missing or misclassification in causes Dr. Ronny Westerman Institute of Medical SociologyandSocialMedicine Medical School & University Hospital July 27, 2012
Introduction Background Data and Methods Results Discussion Reference • Outline • Introduction/Background • Data • Methods • Discussion • Perspectives
Introduction Background Data and Methods Results Discussion Reference • Introduction • Limited Failure Models (Immortal) • CompetingRisks • MissingandMisclassificationofcauses (Maskedcauses)
Introduction Background Data and Methods Results Discussion Reference • Limited FailureModel (CureSurvival Models) • Examples: Infant Mortality • Curabilityofcanceranddecreasingmortalityrisksincediagnosisofcancer • None defectiveunitsare not expectedtofailfromrisk
Introduction Background Data and Methods Results Discussion Reference The CompetingRisk Problem: Eachsubjectbeingexposedtomanycompetingrisks, but onlyone will becausedthefailure Subject ist still right-censoredifit do not failwithinthefollow-upduration
Introduction Background Data and Methods Results Discussion Reference • CompetingRisks • Non-parametic, semi-parametricandfull-parametricmodels • Cause-spezifichazardfunction • Problem: Assumptionofindependencethroughcauseoftenviolated? • Failure Time for all risksareoperativelythe same, in thatcase, all risksbeingremovedexcepttheriskunderconsideration
Introduction Background Data and Methods Results Discussion Reference • MissclassificationandMissingofcauses • Causeofeventforsomeofunitsorindividuals not exactlyidentifiedorrecored • Partial masking: Causeisnarrowed down but not exactelyidentified • Reasonformissclassification: • documentationcontainingtheinformationneededforattributingthecauseoffailuremaybe not collected, orthecauseofdiseasesforsomepatientsmaybedifficulttodetermine
Introduction Background Data and Methods Results Discussion Reference • Difficultiesfordetermination: (aetiologicalproblems) • Example: Cardioembolicstroke (Leary andCaplan, 2008) • Cardioembolicstrokeoccurswhentheheartpumpsunwantedmaterialsintothebraincirculation, resulting in theocclusionof a brainbloodvesselanddamagetothebraintissue. • CS diagnosed in 3-8% strokepatients, but in variouscurrentstrokeregistries, approximately 10-20% patients with CS have not maximal symptomsattheonsetoftheirstrokeExclusion
Introduction Background Data and Methods Results Discussion Reference • Missclassification: • Example: BreastCancer • TNM Stagingvs . I-IV Staging • Stage migration: improveddetectionofillnessleadstomovementofpeoplefromthesetofhealthypeopletothesetofunhealthypeople • Will Rogers phenomen: „WhentheOkiesleft Oklahoma andmovedtoCalifornia, theyraised theaverageintelligencelevel in bothstates“
Introduction Background Data and Methods Results Discussion Reference • Methodsfortreatingmaskedcausedata • 1) MutipleImputations Shouldbeused, when Baseline are not proportional Works good in caseofMissingat Random (forcause) • Problem: High-Mortality-Risks, Multiple-Specificand High- Potential-Risksoften not Missingat Random Falseclassificationormisinterpretationofcause-specific mortality
Introduction Background Data and Methods Results Discussion Reference • Methodsfortreatingmaskedcausedata • 2) Second Stage Analysis • Models with non-proportional cause-specifichazard • 3) EM forgroupedSurvivaldata BayesianMethods • Assumptionsformaskedcauses: • Rightcensoring, ifcauses not exactlyidentified • Maskingprobabiltyisconstantover time
Introduction Background Data and Methods Results Discussion Reference • SEER CancerStatistic Data Base National Cancer Institute, DCCPS, Surveillance Research Program, Cancer Statistics Branch (released April 2012) • IncidencebyRace, Gender and Age (different periodsof time) • Cause-SpecificMortalityincluding all specificcancer • SEER public use dataset on survival of breast cancer patients from1992-2009 (n=69,990 in Situ)
Introduction Background Data and Methods Results Discussion Reference • LeadingCauseof Death in the U.S. 1975 vs. 2009 Source: US Moratlity Files, National Center ofHealthStatistics, Centers ofDiseaseControlandPrevention
Introduction Background Data and Methods Results Discussion Reference • US Death Rates, 1975-2009 Heart Disease compared to Neoplasms, by age at death Source: US Moratlity Files, National Center ofHealthStatistics, Centers ofDiseaseControlandPrevention Rates are per 100,000 and age-adjusted to the 2000 US Std Population (19 age groups - Census P25-1103).
Introduction Background Data and Methods Results Discussion Reference Source: US Moratlity Files, National Center ofHealthStatistics, Centers ofDiseaseControlandPrevention
Introduction Background Data and Methods Results Discussion Reference • 5-year Conditional Relative SurvivalforCanceroffemaleBreast SEER, 2012
Introduction Background Data and Methods Results Discussion Reference • Andnow, what‘stheproblem? PreliminaryAnalysis with SEER- DATA (Sen et al. 2010) • Over-sampling themaskedcases • 46 % ofthewomendiedduringfollow-up • Specificmortalityrelatedtobreastcancer, othercanceror non-cancerrelatedcauses • for 56 % theexactcauseofdeath was known • for 35 % partial informationavailable • 30 % withmissingcauseofdeath: falseclassification (breastcancertootheror multiples cancer) • 65 % missingcauseswerecompletymasked
Introduction Background Data and Methods Results Discussion Reference • How do deal withmaskedcauses ? • Motivation touseTwo-Component-Model formaskedcauses • Risksare latent: nospecificinformationaboutthecauseofthecomponentfailure • Onlysomeindividualsmaysusceptibletotheeventofinterest (curabilityortherecessiveriskforthedisease)
Introduction Background Data and Methods Results Discussion Referenc • Two-Component-Model formaskedcauses (Maller and Zhou, 1996) • First component: failureandsurvival time ofsusceptibleindividuals for a certainevent (in riskindividuals – IR) • Second component: failureandsurvivaltimesfor non-susceptible individuals (out ofriskindividuals –OR) • Population SurvivalFunction • Wecanuse STATA commandsforCureSurvival Models
Introduction Background Data and Methods Results Discussion Reference • Useful Statacommands for cure models: lncure, spsurv, and cureregr (Lambert, 2007) • the advances of cureregr: fits both mixture and nonmixture cure models parametric distributions: exponential, Weibull, lognormal, and gamma parametric distributions available • Optional:strsmix allowing more flexible parametric distributions
Introduction Background Data and Methods Results Discussion Reference Data Analysis with SEER Breast Cancer Data • Survival of breast cancer patients from 1992-2009 (n=69,990 in Situ) • causeofdeath: breastcancerandothercauses othercausesascompetingrisks • Weused a non-mixturecurefractionmodelwithWeibullandExponentialspecification
Introduction Background Data and Methods Results Discussion Reference Results from Data Analysis (Estimates for the Long-Term Survival Function) Λ-scaleparameter, φ- shapeparameter, p- long-term parameter
Introduction Background Data and Methods Results Discussion Reference • Results • noevidencethatWeibullprovides a betterfittingthantheExponential forSeerBreastCancer Data at 5% significance • corrobatetheempirical Kaplan-Meier Survival
Introduction Background Data and Methods Results Discussion Reference
Introduction Background Data and Methods Results Discussion Reference ThrillsandTearswithCureSurvival Models Thrills: lessassumptionsandminorcomputationproblems Tears: toovercomethenaïveassumptionfor infinite failure time of thenonsusceptipleunits
Introduction Background Data and Methods Results Discussion Reference Limitations for parametric hazard functions The complexity of the baseline hazard function (Crowther and Lambert, 2011) • beyond standard and sometimes biologically and implausibleshapes • a turning point in the hazardfunctionisobserved • 2-component mixturedistribution e.g. Weibull-Weibull-distribution otherdistributionfamilies also available
Introduction Background Data and Methods Results Discussion Reference • Options in STATA • STPM2: Statamoduletoestimate flexible parametricsurvivalmodels (Royston-Parmar models) (updatedby Lampert, 2012) • STPM2 also usedwith single- or multiple- record(moregeneralized) • STMIX: 2-component parametricmixturesurvivalmodels (Crowtherand Lambert, 2011) distributionchoicesincludes Weibull-Weibullor Weibull-exponential • STMIX canbeusedwith single- ormultiple-record
Introduction Background Data and Methods Results Discussion Reference • References • Craiuand Lee (2005): Model SelectionfortheCompeting-Risks Model withandwithoutmasking. Technometrics, Vol.25, No.4, 457-467 • Leary MC, Caplan LR (2008): Cardioembolicstroke: An updated on etiology, diagnosisandmanagement. Annuals Indian Academic Neurology , 11, 52-63 • Luand Liang (2008): Analysis ofcompetingrisksdatawithmissingcauseoffailureunder additive hazardmodel. Statistica Sinica 18, 219-234. • Crowtherand Lampert (2011): Simulatingcomplexsurvivaldata. Stata Nordic and Baltic Users‘ Group Meeting • National Cancer Institute DCCPS Surveillance Research Programme, Surveillance, Epidemiologyand End Results (SEER) Programme (www.cancer.seer.gov) Research Data (1973-2009) (Released April 2012) • Louzda et al. (2012): The Long-Term Bivariate Survival FGM Copula Model: An Application to a Brazilian HIV Data. Journal of Data Science 10, 515-535 • Roman et al. (2012): A New Long-Term Survival Distribution forCancer Data. Journal of Data Science 10, 242-258 • Sen et al. (2010): A Bayesianapproachtocompetingrisksanalysiswithmaskedcauseofdeath. Statistics in Medicine, 29, 1681-1695