1 / 35

Fundamentals & applications of plasmonics

Fundamentals & applications of plasmonics. Svetlana V. Boriskina. Plasmonics in EE engineering. tens-to-hundreds nm. Plasmonics in EE engineering. Image credit : M. Brongersma & V. Shalaev. Plasmonics in chemistry & biotechnology. Sensing. Particle synthesis.

minna
Download Presentation

Fundamentals & applications of plasmonics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Fundamentals & applications of plasmonics Svetlana V. Boriskina

  2. Plasmonics in EE engineering tens-to-hundreds nm

  3. Plasmonics in EE engineering Image credit: M. Brongersma & V. Shalaev

  4. Plasmonics in chemistry & biotechnology Sensing Particle synthesis Image: D. Pacifici, Brown University Spectroscopy Theragnostics Image: Jain et al, Nano Today, 2(1) 2007, 18–29 Image: Reinhard group, Boston University Image: Nanopartz Inc

  5. Plasmonics in art & architecture Rayonnat Gothic rose window of north transept, Notre-Dame de Paris (Jean de Chelles, 13th century A.D.) Lycurgus Cup: Roman goblet, 4th century A.D

  6. Overview: lecture 1 • Drude model • Theoretical models for plasmonics • Surface plasmon polariton (SPP) waves • Localized SP resonances - plasmonic atoms • Component miniaturization • Sub-resolution imaging • Temporal & spatial coherence of SP modes • Q-factor enhancement mechanisms • Plasmonic antennas & arrays • Plasmonic atoms & molecules • Plasmonic nanorulers & nanosensors

  7. Drude theory Material response to electric field: electron velocity Collision frequency mean free path Image credit: Wikipedia • Electrons in thermal equilibrium with the surrounding • No restoring force (free ideal electron gas) • No long-range interaction between electrons & ions • No short-range interaction between electrons • Instantaneous collisions with ions with a fixed probability per unit time dt: dt/τ. (τ - relaxation time; ) • Electrons move with constant velocity e.g., N.W. Ashcroft and N.D. Mermin “Solid state Physics” (Saunders College, PA 1976)

  8. Drude theory Frequency-domain solution (monochromatic fields): Macroscopic polarization (dipole moment per unit volume): Definition of the dielectric constant: Drude permittivity function:

  9. Drude-Lorentz theory Au: ω0 Damping factor (mostly radiative) • Drude frequency of metals is in the ultra-violet range • Interband transitions should be taken into account • In the classical model, they are treated as the contribution from bound charges

  10. Results • Bulk plasmon (SP) oscillation is a longitudinal wave • Light of frequency above the plasma frequency is transmitted, with frequency below that - reflected (electrons cannot respond fast enough to screen light) • Plasmon - a quasiparticle resulting from the quantization of plasma oscillations: Permittivity Reflectance

  11. Popular Drude-like materials • Noble metals (Ag, Au, Pt, Cu, Al …) • Drude frequency in the ultra-violet range • Applications from visible to mid-IR • Ordal, M.A. et al, Appl. Opt., 1983. 22(7): p. 1099-1119. • Doped silicon • Drude frequency in the infra-red range • Ginn, J.C. et al, J. Appl. Phys. 2011. 110(4): p. 043110-6. • Oxides and nitrides • Al:ZnO, Ga:ZnO, ITO: near-IR frequency range • Transition-metal nitrides (TiN, ZrN): visible range • Naik, G.V. et al, Opt. Mater. Express, 2011. 1(6): p. 1090-1099. • Graphene • IR frequency range • Jablan, M. et al, Phys. Rev. B, 2009. 80(24): p. 245435. • Vakil, A. & Engheta, N. Science, 2011. 332(6035): pp. 1291-1294.

  12. Theoretical models for plasmonics ‘The oversimplification or extension afforded by the model is not error: the model, if well made, shows at least how the universe might behave, but logical errors bring us no closer to the reality of any universe.’ Truesdell and Toupin (1960) • Classical electromagnetic theory • Local response approximation • Quasi-static approximation • Antenna-theory design • Circuit-theory design • Quantumtheory • Drude model modifications • Ab initio density functional theory • Hydrodynamical models • Hydrodynamical model for electrons: non-local response • Hydrodynamical model for photons e.g. D. C. Marinica, e.g., Nano Lett. 12, 1333-1339 (2012). Next lecture

  13. Quantum-mechanical effects Velocity definition: electron velocity Classical Drude model of an ideal electron gas: mean free path Maxwell-Boltzmann statistics of energy distribution Drude-Sommerfeld model: Fermi energy Fermi-Dirac statistics of energy distribution Quantum size effects (particle size below the mean free path): • Discretized energy levels in conduction band • Free electron gas constrained by infinite potential barriers at the particle edges transitions from occupied (Ei) to excited (Ef ) energy levels J. Scholl, A. Koh & J. Dionne, Nature 483, 421, (2012)

  14. Surface plasmon-polariton wave • Planar interface between two media: • Eigensolutions of the Helmholtz equation: Solution:

  15. Surface plasmon-polariton wave • Planar interface between two media: <λ • Dispersion equation for a surface plasmon-polariton (SPP) wave: Should be negative! Propagating along the interface: real kx Exponentially decaying away from it: imaginary kz

  16. Surface plasmon-polariton wave Experimental Au ω ω Propagating: real kz High DOS: ρ(ħω)∝(dω/dk)-1 Surface: imaginary kz Re(kx) Re(kx) P. B. Johnson & R. W. Christy, Phys. Rev. B 6, 4370 (1972)

  17. SPP excitation Via prisms: Via gratings: a Via localized sources (e.g. tips, molecules):

  18. Miniaturization of photonic components Gramotnev & Bozhevolnyi, Nature Photon 4, 83 - 91 (2010)

  19. Localized SPs on metal nanoparticles + boundary conditions Multi-polar Mie theory formulation: • Exact series solution: • Sphere (cluster of spheres) – fields expansion in the spherical-wave basis • Circular cylinders - fields expansion in the cylindrical-wave basis More complex geometries require numerical treatment (FDTD, FEM, BEM …) Quasi-static limit: • Object much smaller than the light wavelength: all points respond simultaneously • Helmholtz equation reduces to the Laplace equation Plasmon hybridization method (quasi-static): deformations of a charged, incompressible electron liquid expanded in a complete set of primitive plasmon modes (Peter Nordlander, Rice University) C.F. Bohren & Huffman, Absorption and Scattering of Light by Small Particles (Wiley) Novotny, L. & B. Hecht. Principles of Nano-Optics, Cambridge: Cambridge University Press

  20. Localized SPs on metal nanoparticles • Modes with different angular momentum: analogs of electron orbitals of atoms • Higher-order modes have lower radiation losses; do not couple efficiently to propagating waves (dark plasmons) 30nm Ag 60nm Ag Extinction=scattering+absorption Image: Wikimedia commons (author: PoorLeno) K.L. Kelly et al, J. Phys. Chem. B 2003, 107, 668-677.

  21. Tuning LSP resonance Particle shape: Nanosphere size: Cscatt W. A. Murray, W. L. Barnes, Adv. Mater. 19, 3771 (2007) . B. Yan, S.V. Boriskina &B.M. Reinhard J Phys Chem C 115 (50), 24437-24453 (2011)

  22. Applications: sub-resolution imaging Image: http://www.xenophilia.com S. Kawata, Y. Inouye & P. Verma, Nat Photon 3, 388-394 (2009).

  23. SP modes characteristic lengthscales W.L. Barnes 2006 J. Opt. A: Pure Appl. Opt. 8 S87

  24. Coherence of SP modes • Solutions of the SP dispersion equation: • complex-k solution: a complex wave number (k+iα) as a function of real frequency ω • SP propagation length: 2-20μm T.B. Wild, et al, ACS Nano 6, 472-482 (2012) • complex-ω solution: a complex frequency (ω+iγ) as a function of real wave number. • SP lifetime: 6-10fs T. Klar, et al, Phys. Rev. Lett. 80, 4249-4252 (1998).

  25. Q-factor as a measure of temporal coherence Q - the number of oscillations that occur coherently, during which the mode sustains its phase and accumulates energy From experimental spectra: For eigenmode: Why large Q-values are important? • Local fields enhancement: ~ Q • Spontaneous emission rate enhancement: Purcell factor ~ Q • Stimulated emission & absorption rates enhancement ~ Q • Spectral resolution of sensors: ~ Q • Enhancement of Coulomb interaction between distant charges ~ Q http://www.nanowerk.com/spotlight/spotid=24124.php

  26. Coherence enhancement Coupling to photonic modes: Ahn, W., et al. ACS Nano, 2012. 6(1): p. 951-960. See also: Boriskina, S.V. & B.M. Reinhard, Proc. Natl. Acad. Sci., 2011. 108(8): p. 3147-3151; Santiago-Cordoba, M.A., et al. Appl. Phys. Lett., 2011. 99: p. 073701. Blanchard, R. et al, Opt. Express, 2011. 19(22): 22113. See also: Y. Chu, et al, Appl. Phys. Lett., 2008. 93(18): 181108-3; S. Zou, J. Chem. Phys., 2004. 120(23): 10871. Fano resonance engineering: SP gain amplification: Grandidier, J., et al. Nano Lett. 2009. 9(8): p. 2935-2939. also: Noginov, M. A. et al. Opt. Express 16, 1385 (2008); De Leon, I. & P. Berini, Nat Photon, 2010. 4(6): 382-387. Fan, J.A., et al. Science, 2010. 328(5982): 1135 also: Luk'yanchuk, B., et al. Nat Mater, 2010. 9(9): 707; Verellen, N., et al. Nano Lett., 2009. 9(4): 1663

  27. Antenna-theory design of SP components Plasmonic nanodimer as a Hertzian dipole Au particle Alu & Engheta, Phys. Rev. B, 2008. 78(19): 195111; Nature Photon., 2008. 2(5): 307-310 analog of a dipole antenna Review: P. Bharadwaj, B. Deutsch & L. Novotny, Optical antennas. Adv. Opt. Photon., 2009. 1(3): p. 438-483.

  28. Antenna-theory design of SP components Phased nanoantenna arrays: Constructive/destructive interference between dipole fields of individual nanoparticles QD Y. Chu, et al, Appl. Phys. Lett., 2008. 93(18): p. 181108-3 Curto, A.G., et al. Science, 2010. 329(5994): p. 930-933. http://www.haarp.alaska.edu/haarp/ http://www.ehow.com/info_12198356_yagi-antenna.html

  29. Circuit-theory design of SP components Au particle Engheta, N. Science, 2007. 317(5845): p. 1698-1702.

  30. Chemical analogs: plasmonic molecules P. Nordlander, et al, Nano Lett. 4, 899-903 (2004). Bonding LSP mode Anti-bonding mode Credit: Capasso Lab, Harvard School of Engineering & Applied Sciences

  31. Spectra shaping B. Yan, S. V. Boriskina, & B. M. Reinhard, J. Phys. Chem. C 115, 4578-4583 (2011); J. Phys. Chem. C 115, 24437-24453

  32. Local field enhancement Diatomic plasmonic molecule: |E|2 Cscatt Spectroscopy applications (next lecture) B. Yan, S. V. Boriskina, & B. M. Reinhard, J. Phys. Chem. C 115, 24437-24453 (2011)

  33. Applications: plasmon nanorulers • Measuring distances below diffraction limit • Stable probes (no photobleaching) N. Liu, et al, Science 332, 1407-1410 (2011) Alivisatos group, UC Berkeley; C. Sonnichsen, et al, Nat Biotech 23, 741-745 (2005)

  34. Applications: cell surface imaging Quantification of cell surface receptors, which are important biomarkers for many diseases Wang, Yu, Boriskina & Reinhard, Nano Lett., Article ASAP, DOI: 10.1021/nl3012227, 2012

  35. Overview: lecture 2 • Refractive index, fluorescence & Raman sensing • SP-induced nanoscale optical forces • Optical trapping & manipulation of nano-objects • Near-field heat transfer via SPP waves • Plasmonics for photovoltaics • Hydrodynamical models • Hydrodynamical model for electrons: non-local response • Hydrodynamical model for photons • Magnetic effects • Plasmonic cloaking • Quantum effects • Further reading & software packages

More Related