270 likes | 280 Views
This study explores the equation of state of nuclear matter at low energies through the use of transport theory and two-particle correlations. The NSCL 03045 experiment is discussed, as well as particle emission chronology and the impact of neutron and proton emission times and symmetry energy. The aim is to understand the observables, densities, and asymmetries that can constrain the equation of state.
E N D
Probing the equation of state of nuclear matter with two-particle correlations Zbigniew Chajęcki Western Michigan University for the HiRA group
Outline • Equation of state of nuclear matter at low energies • transport theory (BUU) • p-p correlations • NSCL 03045 Experiment • particle emission chronology • (neutron and proton emission times and symmetry energy) • Summary Z. Chajecki - WPCF 2017
EOS and Symmetry Energy adapted from M.B. Tsang, Prog. Part.Nucl.Phys. 66, 400 (2011) Brown, Phys. Rev. Lett. 85, 5296 (2001) E/A (,) = E/A (,0) + d2S() d = (n- p)/ (n+ p) = (N-Z)/A Stiff • Both astrophysical and laboratory observables can constrain the EoS indirectly • What are the observables? • At what densities or asymmetries do these constraints apply? • What are the accuracies or model dependencies of these constraints? Soft Super soft Z. Chajecki - WPCF 2017
Modeling heavy ion collisions • Our tool: Transport models • BUU – Boltzmann-Uehling-Uhlenbeck • QMD – Quantum Molecular Dynamics • AMD – Antisymmetrized Molecular Dynamics • Simulates the time-dependent evolution of the collision • Main ingredients • Nucleons in mean-field • Symmetry energy • Momentum-dependent nuclear interaction • In-medium cross section effective mass • Cluster production Danielewicz, Acta. Phys. Pol. B 33, 45 (2002) Danielewicz, Bertsch, NPA533 (1991) 712 Z. Chajecki - WPCF 2017
What we hope to learn? (Double-)ratios Isospin diffusion Spectra Femtoscopy Flow pBUUTransport model ingredients Our approach: Use different isotopes (fix Z of your initial system and vary N) Z. Chajecki - WPCF 2017
Proton femtoscopy (p,p) correlation function (p,p) correlation function S-wave interraction S(r) S(r) S-wave interraction r1/2 Coulomb Coulomb r r uncorrelated uncorrelated 0 0 |q| = 0.5 |p1 - p2| |q| = 0.5 |p1 - p2| Theoretical CF: Koonin-Pratt equation p1 S.E. Koonin, PLB70 (1977) 43 S.Pratt et al., PRC42 (1990) 2646 x1 r … 2-particle wave function … source function x2 p2 few fm Z. Chajecki - WPCF 2017
Our experiment Z. Chajecki - WPCF 2017
NSCL experiment 05045: HiRA + 4 detector = High Resolution Array beam • 4π detector => impact parameter + reaction plane • HiRA => light charge particle correlations (angular coverage 20-60º in LAB, • 63 cm from target (= ball center)) Reaction systems: 40Ca + 40Ca @ 80 MeV/u 48Ca + 48Ca @ 80 MeV/u Z. Chajecki - WPCF 2017
NSCL experiments 05045: HiRA + 4 detector 4x CsI(Tl) 4cm Si-E 500 mm Si-DE 65mm = High Resolution Array Particle identification 4He 3He t d p Z. Chajecki - WPCF 2017
Experimental correlation functions C(q) Low PT : [150,350] MeV High PT : [350,700] MeV Measured correlation functions depend on rapidity and the transverse momentum of the pair Next step:extract the sizes Z. Chajecki - WPCF 2017
Gaussian S(r)? C(q) Two ways of characterizing the size of the p-p source S(r) - Gaussian shape Imaged S(r) (Brown, Danielewicz) Koonin-Pratt Equation Brown, Danielewicz, PLB398 (1997) 252 Danielewicz, Pratt, PLB618 (2005) 60 Z. Chajecki - WPCF 2017
Fits to the data C(q) Both methods give consistent fits Two ways of characterizing the size of the p-p source S(r) - Gaussian shape Imaged S(r) (Brown, Danielewicz) Koonin-Pratt Equation Brown, Danielewicz, PLB398 (1997) 252 Danielewicz, Pratt, PLB618 (2005) 60 Z. Chajecki - WPCF 2017
Fits to the data r1/2 Source distribution : S(r) x103 Correlation function C(Q) Z. Chajecki - WPCF 2017
Fits to the data Correlation function C(Q) rapidity & momentum dependence Z. Chajecki - WPCF 2017
Fit results Small rapidity:reflect the participant zone of the reaction Large rapidity:reflect the expanding, fragmenting and evaporating projectile-like residues Higher velocity protons are more strongly correlated than their lower velocity counterparts, consistent with emission from expanding and cooling sources Sensitivity to the initial size Z. Chajecki - WPCF 2017
Comparing data to theory (pBUU) Proton femtoscopy in 48Ca+48Ca ..@ 80 AMeV 6 5 4 3 Importance of cluster production and in-medium cross section Henzl et al., Phys.Rev. C85 (2012) 014606 Z. Chajecki - WPCF 2017
Comparing data to theory (pBUU) . BUU Pararameters • Rostock in-medium reduction • Importance of the clusters • No dependence on symmetry energy – not shown BUU does reasonably well Except at larger rapidities - Spectator source Where evaporation and secondary decays are important! Z. Chajecki - WPCF 2017
Comparing data to theory (pBUU) . Assuming the decay occurs from a spherical source with RG and the timescale of the decay is t Z. Chajecki - WPCF 2017
Averaged emission time of particles in transport theory Z. Chajecki - WPCF 2017
Emission of p’s and n’s: Sensitivity to SymEn adapted from M.B. Tsang, Prog. Part.Nucl.Phys. 66, 400 (2011) Brown, Phys. Rev. Lett. 85, 5296 (2001) 52Ca 48Ca Stiff Stiff EoS L-W Chen et al., PRL90 (2003) 162701 Soft Soft EoS Super soft Soft Stiff EoS (γ=2) Soft EoS (γ=0.5) p’s and n’s emitted at similar time fasteremission times p’s emittedafter n’s later emission times Stiff Z. Chajecki - WPCF 2017
Emission of p’s and n’s: Sensitivity to SymEn 52Ca 48Ca Stiff EoS L-W Chen et al., PRL90 (2003) 162701 Soft EoS Soft EoS (γ=0.5) Stiff EoS (γ=2) p’s emitted after n’s later emission times p’s and n’s emitted at similar time fasteremission times Z. Chajecki - WPCF 2017
Possible emission configurations (stiff EOS) n n n n p p p p Catching up Catching up qx<0 qx>0 Moving away Moving away qx<0 qx>0 (n,p) correlation function Dq=0.5(pp –pn)=(qx, qy=0,qz=0); r=(x, y=0,z=0) qx<0 qx>0 S(x) x 0 q = 0.5(pp - pn) Z. Chajecki - WPCF 2017
Emission of p’s and n’s 52Ca 48Ca Stiff EoS L-W Chen et al., PRL90 (2003) 162701 Soft EoS Soft EoS (γ=0.5) Stiff EoS (γ=2) p’s emitted after n’s later emission times p’s and n’s emitted at similar time fasteremission times Z. Chajecki - WPCF 2017
Sensitivity to particle emission (soft EOS) n n p p Moving away Catching up qx<0 qx>0 (n,p) correlation function qx<0 qx>0 S(x) x 0 Dq=0.5(pp –pn)=(qx, qy=0,qz=0); r=(x, y=0,z=0) qx = 0.5(px,p - px,n) Z. Chajecki - WPCF 2017
Relating asymmetry in the CF to space-time asymmetry Stiff EoS Soft EoS (n,p) correlation function qx<0 qx>0 S(x) <x> x 0 qx = 0.5(px,p - px,n) Classically, average separation b/t protons and neutrons Not expected if n,p emitted from the same source (no n-p differential flow) =0 Protons emitted later Voloshin et al., PRL 79:4766-4769,1997Lednicky et al., PLB 373:30-34,1996 Z. Chajecki - WPCF 2017
Summary • Two particle correlations provide a unique probe to study the space-time extend of the source • add constrains on the in-medium cross-section • importance of the clusters, symmetry energy • validate theoretical models • The average relative emission time of n’s and p’s potentially sensitive to the symmetry energy and can be “measured” with two particle correlations • Transport models • Predictions are model dependent • Collaboration between theorists and experimentalists beneficial for both sides Z. Chajecki - WPCF 2017
Thank you HiRA collaborators Z. Chajecki - WPCF 2017