1 / 68

High Efficient Distributed Video Coding with Parallelized Design for Cloud Computing

High Efficient Distributed Video Coding with Parallelized Design for Cloud Computing. 適用於雲端架構下兼具高效能與平行化設計之分散式視訊編碼. Cheng, Han-Ping 程瀚平 Advisor: Prof. Wu, Ja -Ling 吳家麟 教授 2010/6/2. Outline. Introduction DISPAC video codec RD performance of DISPAC Parallelizing DISPAC decoder

minty
Download Presentation

High Efficient Distributed Video Coding with Parallelized Design for Cloud Computing

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. High Efficient Distributed Video Coding with Parallelized Design for Cloud Computing 適用於雲端架構下兼具高效能與平行化設計之分散式視訊編碼 Cheng, Han-Ping 程瀚平Advisor: Prof. Wu, Ja-Ling 吳家麟 教授 2010/6/2 CMLab, CSIE, NTU

  2. Outline Introduction DISPAC video codec RD performance of DISPAC Parallelizing DISPAC decoder Decoding speed of DISPAC Conclusions and future work CMLab, CSIE, NTU

  3. Trends of Cloud Computing Cloud Computing makes Clients slimmer&thinner CMLab, CSIE, NTU

  4. Video Coding in Cloud Computing • Only need low complexity encoder and decoder at client side • Conventional video coding (e.g. H.264) • Encode once, decode many times • Low complexity decoder • Distributed Video Coding (DVC) • e.g. Video surveillance, wireless sensor network • Low complexity encoder CMLab, CSIE, NTU

  5. RX ≧H(X) Source X X Joint Encoder Joint Decoder Statistical dependency Y Source Y Distributed Video Coding RX + RY≧H(X, Y) Conventional video coding paradigm • RY ≧H(Y) • RX ≧H(X) Source X Encoder X • Slepian&Wolf : H(X, Y) !! X RX + RY≧? Joint Decoder Dependency exists but is not exploited Y Source Y Encoder Y • RY ≧H(X) Slepian-Wolf Theorem (1973) Wyner-Ziv Theorem (1976) CMLab, CSIE, NTU

  6. Distributed Video Coding RX + RY≧? Encoder X Joint Decoder • RX ≧H(X|Y) Channel Encoder Channel Decoder Source Encoder Source Decoder X Quantizer Source X P Virtual channel • Correlation is exploited X’ Side information estimation • Dependency exists but is not exploited Y Encoder Y • RY ≧H(Y) Source Decoder Source Encoder Source Y Quantizer • Wyner&Ziv: H(X, Y)! Y • DVC is also called Wyner-Ziv (WZ) video coding Channel coding (Error Control Code): Channel Encoder X+P Noisy Channel (X+P)’ Channel Decoder X’ X • Wyner-Ziv Theorem (1976) • Extend to lossy coding CMLab, CSIE, NTU

  7. Video Coding in Cloud Computing Cloud Computational Resource H.264 encoded bitstream WZ to H.264 Transcoder WZ encoded bitstream H.264 decoder (Low Complexity) WZ encoder (Low Complexity) WZ to H.264 video transcoder CMLab, CSIE, NTU

  8. Motivation • There is still a gap between Wyner-Ziv video coding and conventional video coding (e.g. H.264/AVC) • Most reported WZ codecs have a high time-delay in the decoder • Trends of parallel computing • e.g. Multi-core CPU, GPU • Parallelizability of the decoder is essential CMLab, CSIE, NTU

  9. DISPAC Video Codec • DIStributed video coding with PArallelized design for Cloud computing (DISPAC) • To better rate-distortion (RD) performance • Combine coding tools developed in recent literatures with some newly developed modules. • To reduce decoding time-delay • Highly parallelized decoder. CMLab, CSIE, NTU

  10. Outline Introduction DISPAC video codec RD performance of DISPAC Parallelizing DISPAC decoder Decoding speed of DISPAC Conclusions and future work CMLab, CSIE, NTU

  11. DISPAC Video Codec • Combine coding tools of two state-of-the-art WZ codec: • DISCOVER codec (Distributed coding for video services) • X. Artigas et al., “The DISCOVER codec: architecture, techniques and evaluation”, PCS, 2007 • MLWZ codec (Motion-learning based Wyner-Ziv video coding) • R. Martin et al., “Statistical motion learning for improved transform domain Wyner-Ziv video coding”, IET Image Processing, 2010 CMLab, CSIE, NTU

  12. DISCOVER Video Codec Key WZ Key WZ Key WZ GOP 2 GOP 4 CMLab, CSIE, NTU Ref. X. Artigas et al., PCS, 2007

  13. 16 8 0 0 8 0 0 0 32 32 32 8 8 16 4 8 0 4 0 0 0 0 0 0 16 8 8 8 4 0 0 4 0 0 0 0 0 0 0 0 0 8 4 4 0 0 0 0 0 0 0 0 Q1 0 0 4 0 0 0 0 0 0 0 0 0 Q2 Q4 Q3 32 16 8 4 64 16 8 8 64 32 16 8 128 64 32 16 16 8 4 4 16 8 8 4 32 16 8 4 64 32 16 8 8 4 4 0 8 8 4 4 16 8 4 4 32 16 8 4 4 4 0 0 8 4 4 0 8 4 4 0 16 8 4 0 Q5 Q6 Q7 Q8 Quantization 32 = 25 => use 5 bits 0 bits (不傳送) 8 = 23 => use 3 bits Eight quantization matrices CMLab, CSIE, NTU

  14. S21 S31 S11 S22 S12 S32 S16 S36 S26 S27 S17 S37 S13 S23 S33 S15 S25 S35 S18 S38 S28 S213 S313 S113 S34 S24 S14 S29 S19 S39 S312 S212 S112 S214 S114 S314 S310 S210 S110 S111 S211 S311 S115 S315 S215 S216 S316 S116 Block1 Block3 Block2 Quantization • DCT coefficient band b1: { S11, S21, S31, …SN1 } DC band • DCT coefficient band b2: { S12, S22, S32, …SN2 } AC bands … • DCT coefficient band b16: { S116, S216, S316, …SN16 } DCT coefficient band CMLab, CSIE, NTU

  15. 32 16 8 4 16 8 4 0 8 4 0 0 4 0 0 0 Q4 Bit plane Extraction • For each DCT coefficient band… Bit planes of DC band: MSB 0 0 1 0 0 0 0 0 0 1 Bit plane 1: Bit plane 2: Channel Encode (LDPCA) Bit plane 3: Bit plane 4: 0 0 0 0 0 1 1 1 1 0 Bit plane 5: LSB 30 1 0 4 1 7 6 6 7 3 7 5 CMLab, CSIE, NTU

  16. DISCOVER Video Codec 白育姍 Encoder X Joint Decoder • RX ≧H(X|Y) Channel Encoder Channel Decoder X Quantizer Source X P Virtual channel X’ Side information estimation • Dependency exists but is not exploited Y Encoder Y • RY ≧H(Y) Source Decoder Source Encoder Source Y Quantizer Y CMLab, CSIE, NTU Ref. X. Artigas et al., PCS, 2007

  17. Side Information Creation Divide frame to 16x16 non-overlapped blocks Motion estimation (search window: ±32) Low pass filter (3x3 Mean filter) XF XB CMLab, CSIE, NTU

  18. Side Information Creation XF XB CMLab, CSIE, NTU

  19. Side Information Creation XB XF (xu, yu) Adaptive search range: N (xRyR) (xL, yL) N N N (xB, yB) CMLab, CSIE, NTU

  20. Side Information Creation XB XF Half pixel motion estimation CMLab, CSIE, NTU

  21. Side Information Creation x3 x2 x1 x6 x5 x4 x9 x8 x7 XB XF Weighted vector median filter: Spatial motion smoothing CMLab, CSIE, NTU

  22. Side Information Creation x2 MSE2 x1 MSE1 XB XF Weighted vector median filter: CMLab, CSIE, NTU

  23. Side Information Creation x1 XB XF Weighted vector median filter: CMLab, CSIE, NTU

  24. Side Information Creation The result of x6 is minimum xwvmf = x6 (Final motion vector ! ) x6 XB XF Weighted vector median filter: CMLab, CSIE, NTU

  25. Side Information Creation XB XF Block interpolation ( 0.75*XB + 0.25*XF ) Bidirectional motion compensation CMLab, CSIE, NTU

  26. DISCOVER Video Codec 白育姍 Laplacian Distribution CMLab, CSIE, NTU Ref. X. Artigas et al., PCS, 2007

  27. CNM Parameter Estimation XF XB R Residual frame generation: CMLab, CSIE, NTU

  28. CNM Parameter Estimation z R T 120 258 35 -30 -24 -6 20 200 0.5 -40 10 5 Residual frame DCT transform : (4x4) CMLab, CSIE, NTU

  29. CNM Parameter Estimation T 120 258 35 -30 -24 -6 20 200 0.5 -40 10 5 CNM parameter computation: CMLab, CSIE, NTU

  30. DISCOVER Video Codec 白育姍 CMLab, CSIE, NTU Ref. X. Artigas et al., PCS, 2007

  31. Correlation Noise Distribution Modeling WZ Side information CNM parameter Laplacian distribution CMLab, CSIE, NTU

  32. DISCOVER Video Codec 白育姍 CMLab, CSIE, NTU Ref. X. Artigas et al., PCS, 2007

  33. Prob. Conditional Bit Prob Computation WZ WZ WZ WZ 144/4 Laplacianpdf 176/4 X-Y 0011000 (24) 0011111 (31) Need to sum up 256 probabilities Assume quantization step size is 32 (31-24+1) x 32 = 256 : probabilities of the k-th bit is one given side information (Y) and previous k-1 decoded bits CMLab, CSIE, NTU R.P. Westerlaken et al., “Analyzing symbol and bit plane-based LDPC in distributed video coding”, ICIP, 2007.

  34. DISCOVER Video Codec 白育姍 CMLab, CSIE, NTU Ref. X. Artigas et al., PCS, 2007

  35. Reconstruction Bit planes of DC band: 7 4 6 1 Bit plane 1: 0 0 0 1 7 7 Channel decode (LDPCA) Bit plane 2: 0 0 0 1 Bit plane 3: 1 0 0 1 0 6 1 30 Bit plane 4: 0 0 0 1 5 3 Bit plane 5: 0 1 0 0 Zigzag order CMLab, CSIE, NTU

  36. Reconstruction D. Kubasovet al., “Optimal reconstruction in Wyner–Ziv video coding with multiple side information”, IEEE workshop on MMSP, 2007 CMLab, CSIE, NTU

  37. DISCOVER Video Codec 白育姍 Poor RD performance for high motion and large GOP size sequences CMLab, CSIE, NTU Ref. X. Artigas et al., PCS, 2007

  38. DISCOVER Video Codec 白育姍 Rooms for Improvement CMLab, CSIE, NTU Ref. X. Artigas et al., PCS, 2007

  39. MLWZ Video Codec 白育姍 SI (Y) Search range SMF1=0.1 SMF2=0.02 SMF81=0.1 WZ (R) Normalize SMF: Update SMF: CMLab, CSIE, NTU Ref. R. Martin et al., IET Image Processing, 2010

  40. MLWZ Video Codec SI 白育姍 Search range … … Side information re-estimation: CMLab, CSIE, NTU Ref. R. Martin et al., IET Image Processing, 2010

  41. MLWZ Video Codec 白育姍 Correlation Noise Distribution Modeling: DCT coefficient SI Sum of Laplacian ! Laplacian parameter Laplacian distribution DCT coefficient of WZ CMLab, CSIE, NTU Ref. R. Martin et al., IET Image Processing, 2010

  42. MLWZ Video Codec 白育姍 Improve RD performance in high motion and large GOP size sequences Rooms for Improvement CMLab, CSIE, NTU Ref. R. Martin et al., IET Image Processing, 2010

  43. DISPAC Video Codec 白育姍 邱柏叡 Improve subjective quality Half-pixel motion estimation: Improve SI for motion learning Improve initial SI and motion learning 邱柏叡 For low motion parts Reduce decoding time and Improve RD performance For high motion parts CMLab, CSIE, NTU

  44. DISPAC Video Codec 白育姍 邱柏叡 程瀚平 邱柏叡 CMLab, CSIE, NTU

  45. Outline Introduction DISPAC video codec RD performance of DISPAC Parallelizing DISPAC decoder Decoding speed of DISPAC Conclusions and future work CMLab, CSIE, NTU

  46. RD Performance of DISPAC Soccer Foreman Coastguard Hall Monitor Low High Motion Test sequences: QCIF, 15Hz, all frames (150 for Soccer, Foreman, Coastguard and 164 for Hall Monitor) GOP size: 2, 4, 8 Bitrate and PSNR: only luminance component CMLab, CSIE, NTU

  47. RD Performance (GOP=2) CMLab, CSIE, NTU

  48. RD Performance (GOP=4) CMLab, CSIE, NTU

  49. RD Performance (GOP=8) 3.6 dB 3.1 dB 3.1 dB 1.6 dB 0.9 dB 0.2 dB 2.6 dB 2.6 dB CMLab, CSIE, NTU

  50. Outline Introduction DISPAC video codec RD performance of DISPAC Parallelizing DISPAC decoder Decoding speed of DISPAC Conclusions and future work CMLab, CSIE, NTU

More Related