100 likes | 215 Views
Handwritten Word Recognition ( preprocessing ). CmpE 537 (Computer Vision) Aleksei Ustimov 2006800811. Preprocessing Tasks. Binarization Slant Correction Skeletonization Reference Lines Detection Segmentation. Data Collection. Writing any text using special pen,
E N D
Handwritten Word Recognition (preprocessing) CmpE 537 (Computer Vision) Aleksei Ustimov 2006800811
Preprocessing Tasks • Binarization • Slant Correction • Skeletonization • Reference Lines Detection • Segmentation
Data Collection • Writing any text using special pen, • Scanning written texts with 150 dpi resolution, • Separating isolated words with image processing tool.
Binarization • Otsu’s Thresholding method • Slow • Not sensible to details • Adaptive Thresholding method • Noisy • Requires tuning
Slant Correction • Detects pen stroke width • Removes all lines with slant >60o • Removes small pieces • Calculates slant angle • Correct slant by shifting image rows
Skeletonization • Performs Holtz thinning until all lines are 1px wide • Removes small triangles using LYT removal algorithm
Reference Lines Detection • Locates main body • Locates ascenders • Locates descenders • Calculates approximate position of reference lines
Segmentation • Locates discontinuities in lines • Locates ligatures (character connection arcs) • Prefers oversegmentation
References • Seiler, R., Schenkel, M., Eggimann, F., Off-Line Cursive Handwriting Recognition Compared with On-Line Recognition, In Proc. IEEE-ICPR, Vol. 4, 1996, p. 505-509, 1996 • Bunke, H., Roth, M., Schukat-Talamazzini, E.G., Off-line Cursive Handwriting Recognition Using Hidden Markov Models, Pattern Recognition, Vol. 28, No. 9, p. 1399-1413, 1995 • Andrew, W., Robinson, A.J., An Off-Line Cursive Handwriting Recognition System, IEEE Transactions On Pattern Analysis and Machine Intelligence, Vol. 20, No. 3, p. 309-321, 1998 • Wang, W., Brakensiek, A., Kosmala, A., Rigoll, G., HMM Based High Accuracy Off-Line Cursive Handwriting Recognition By A Baseline Detection Error Tolerant Feature Extraction Approach, In Proc. IWFHR-7, p. 209-218, 2000 • Park, J., Govindaraju, V., Using Lexical Similarity In Handwritten Word Recognition, In Proc. IEEE Conference on Computer Vision and Pattern Recognition, Vol. 12, p. 290-295, 2000 • Morita, M., Sabourin, R., Bortolozzi, F., Suen, C.Y., A Recognition and Verification Strategy For Handwritten Word Recognition, In Proc. ICDAR, Vol. 1, p. 482-486, 2003 • Favata, J.T., Offline General Handwritten Word Recognition Using an Approximate BEAM Matching Algorithm, IEEE Tansactions on Pattern Analysis and Machine Intelligence, Vol. 23, No. 9, p. 1009-1021, 2001 • Lavrenko, V., Rath, T., Manmatha, R., Holistic Word Recognition For Handwritten Historical Documents, In Proc. DIAL, p. 278-287, 2004 • Liu, X., Shi, Z., A Format-Driven Handwritten Word Recognition System, ICDAR, Vol. 2, p. 1118-1122, 2003