1 / 64

A Method for Obtaining Detailed Abundances of Extragalactic Globular Clusters

A Method for Obtaining Detailed Abundances of Extragalactic Globular Clusters. LMC- NGC 2005. MW- 47Tuc. NGC 5128. w/ Andy McWilliam (Carnegie Obs.) Scott Cameron, Janet Collucci (UM). The goal: formation histories of galaxies. Galaxy #1, Milky Way:

miracle
Download Presentation

A Method for Obtaining Detailed Abundances of Extragalactic Globular Clusters

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A Method for ObtainingDetailed Abundances of Extragalactic Globular Clusters LMC- NGC 2005 MW- 47Tuc NGC 5128 w/ Andy McWilliam (Carnegie Obs.) Scott Cameron, Janet Collucci (UM)

  2. The goal: formation histories of galaxies Galaxy #1, Milky Way: Formation: halo  bulge/thick disk  thin disk Evidence: abundances (Fe,O,Mg,Eu…) & kinematics (bulk, streams) (1) Stars : *timescales*, substructure (recent: Ivans et al 2003) halothickbulgethin Prochaska et al 2004 Yanny et al 2003

  3. The goal: formation histories of galaxies Galaxy #1, Milky Way: Formation: halo  bulge/thick disk  thin disk Evidence: abundances & kinematics (2) Globular clusters: easy targets! date-able! old! Parmentier et al 2000

  4. Formation history of other galaxies: Local Group: getting details (limitation: flux) Evidence: Supergiants (Venn et al 04, McWilliam & Smecker-Hanes 04) bright = young! (no history) Venn et al 2004

  5. Formation history of other galaxies: Beyond…: different tools (limitation: flux & resolution) Evidence: integrated light - broad-band colors + [stellar population models] general: red (old/metal-rich)blue (young/metal-poor) - line indices + [stellar population models] Lick System (Worthey et al, Trager et al, Gonzalez et al), Rose

  6. Formation history of other galaxies: Beyond: low resolution spectra (>2Å) +stellar population models Limitations: 1-Age/metallicity degenerate (young/z-rich  old/z-poor) 2- z vs Fe ? Mg, O,Ca…? calibration: abundances ratios? * multiple generations of star formation. blue Age Z Worthy 1998

  7. Formation history of other galaxies : Age Beyond: low resolution spectra (>2Å) +stellar population models Limitations: 1-Age/metallicity degenerate (young/z-rich  old/z-poor) 2- z vs Fe ? Mg,O,Ca…? calibration: abundances ratios? Recent: Principle component analysis: PC1 metallicity Strader,Brodie ’04,Burstein et al 04 Globular clusters* Z Forbes et al. 04

  8. Formation history of other galaxies : • Beyond: integrated light of GCs • Principle component analysis: PC1 metallicity • Forbes et al.’04, Strader,Brodie ’04, Burstein et al 04 • [Fe/H] ( or z):  0.1 dex (optimistic?) • Age: 3 Gyrs • [E/Fe]:  0.1-0.2 (?) (“” or “enhanced”) • C,N; O,Mg,Si,Ca; Cr; Na • produced in SNII, SNI, and AGB stars • Missing: z vs. Fe vs. , self-enrichment, IMF • **M31: young (0.5-5Gyr), disk GC system • (Beasley 04, Burstein 04, Morrison 04) Forbes et al. 04

  9. Why high resolution? Globular cluster spectra: [Fe/H]  -1 Mg2 Mgb 0.17 Å Perrett et al 2002, M31 5.1 Å

  10. Why globular clusters? Milky Way GCs: v 2-18 (R  7-60 k) -7 > Mv > -9 10,000 < R < 30,000 E, Sa galaxies: v 150km (R  850)

  11. Why get detailed abundances? Element-yield review: < 2M: H C 2-8M: H C/O/Ne, n-capture (s-process) [binary] SN Type I: Fe-peak 8-30M: HFe, SN Type II: Fe-peak, -elements, n-capture (r-process) Punch line: “-elements” ………………… SN II:fast (Myrs) (O,Mg, Si,S,Ca, Ti; Al,Na?) Fe:………………………………… SN I: slow(Gyrs) SN II:fast Fe-peak (21-30p) :………… SN I: slow (Sc, V, Cr, Mn,SN II:fast Co, Ni, Cu, Zn) Fe-dep. yields? Heavy (Ba, Y, Zr, La, Sr…) ………… SN I: slow (Eu, Sm, Nd…)………………… SN II:fast halothickbulge thin Prochaska et al 2000, Bensby et al 2004

  12. Why get detailed abundances? Metal poor halothickbulge thin Element-yield review: e(X) = relative number = (x/H) = log (N(X)/N(H)) + 12 [Fe/H] = log(Fe/H) - log(Fe/H) [X/Fe] = e(X/Fe) - e(X/Fe) z = mass fraction beyond He z= 0.019 enriched deficient Prochaska et al 2000

  13. Why get detailed abundances? Metal poor halothickbulge thin [/Fe] vs [Fe/H] : formation timescale [Eu/Fe] : r-process (SNII) IMF, nucleosynthesis [Ba/Fe] : s-process (SNI, low-m), IMF, nucleosynthesis enriched *1- Detailed formation of galaxy #2 2- test stellar population models 3- understand the line indices deficient Prochaska et al 2000

  14. The goal: GC abundances outside the local group… Requirements: S/N  50 Ha R  10,000 – 30,000 3500-9500 A MIKE + Magellan: GC limit  18 V mag Bernstein, Shectman, Gunnels, installed Nov 2002

  15. The goal: Galaxies outside the local group… NGC 5128: S0 (Dec = -43) D = 3.5 Mpc m-M = 27.7 GCs: Mv 17-20 mag (RGB tip: v  25-26 mag) (young supergiants) Rejkuba 2001 (UVES/FORS imaging)

  16. The goal: Galaxies outside the local group… NGC 1313: SBd (Dec = -66) D = 4.4 Mpc m-M = 28 GC: v  17-20 mag (RGB tip: v  25-26 mag)

  17. High resolution analysis — A Training Set The Milky Way Globular Clusters (= 14-16 mag/asec2):

  18. High resolution analysis — A Training Set Milky Way GCs:GC Integrated Light Spectra (ILS) at different abundances & masses [Fe/H] = -2.0 v = 4km/s V = -6 mag vs [Fe/H]=-0.76 v = 12km/s V = -9 mag

  19. High resolution analysis — A Training Set Milky Way GCs: ILS spectrum vs single RGB NGC 104 (47Tuc): [Fe/H] = -0.76 v = 12 km/s V = -9 mag Eu in RGB: EW= 16 mÅ!

  20. A Training Set: • Milky Way: 7 clusters (= 14-16 mag/asec2): • [Fe/H] Mv • ngc 6397 -1.95 -6.6 • ngc 6093 -1.75 -8.23 • ngc 6752 -1.42 -7.7 • ngc 2808 -1.36 -9.35 • ngc 362 -1.16 -8.4 • ngc 104 (47Tuc) -0.76 -9.4 • ngc 6388 -0.60 -9.8 • LMC: 7 clusters to date (m-M=18.5, mv=10 mag, v= 14-16 mag/asec2) • ngc 2019, 2005 [Fe/H] ≈ -2.0 old (>5 Gyr) • ngc 1866, 1978 [Fe/H] ≈ ? intermediate (0.1-1.5 Gyr) • ngc 1711, 2002, 2100 [Fe/H] ≈ -0.6 young (<0.1 Gyr)

  21. Training Set: observations Milky Way (6) + LMC (8) : Integrated light spectra individual stars MW: 47Tuc 1”x4” slit 32”x32” LMC: n1711 1”x4” slit 12”x12”

  22. Training Set: analysis? • Individual stars:EWobs vs. Modeled stellar atmospheres • - Kurucz stellar atmosphere grids (ATLAS9) • Teff *(B-V)obs • log g *(V) obs •  *(1-2 km/s) • [Fe/H] •  mass,T,P,N(e-) • - MOOG (Sneden 1998), for each line: • , EP, loggf, (X) •  EWmod • *tune to get same (Fe) • for all FeI,II lines.

  23. Training Set: analysis Integrated light:EWobsvs ??? RESOLVED globular cluster --> observed CMD! Build up an atmosphere model.

  24. Training Set: analysis Integrated light:EWobsvs composite model atmosphere - Kurucz stellar atmosphere grids (ATLAS9) Teff (B-V)obs log g (V) obs   log g [Fe/H] - MOOG (Sneden v.1998), for each line: , EP, loggf, (X)  EW per box.  Combine to get light-weight EW * NO PARAMETER TUNING

  25. Training Set: step 0 - observed CMD RESOLVED globular cluster --> observed CMD! • Training set issues: • scanned core only! • rare stars not included.

  26. Training Set: step 0 - observed CMD (n6397) NGC 6397: Stable FeI solution: Is (Fe) stable with lines’ Excitation Potential Checks Teff, reddening: Population of energy state depends on T

  27. Training Set: step 0 - observed CMD (n6397) NGC 6397: Stable FeI solution: Is (Fe) stable with lines’ wavelength Checks fraction of flux from hot/cool stars: blue light -- from hot stars with weak lines red light -- cool stars with strong lines.

  28. Training Set: step 0 - observed CMD (n6397) NGC 6397: Stable FeI solution: Is (Fe) stable with lines’ EW. Checks  ( log g, 1-2 km/s) Microturbulence decreases saturation of strong lines. (0km/s larger covering factor in wavelength space. Larger velocities “spread” the atoms in wavelength space, decreasing saturation.)

  29. Training Set: step 0 - observed CMD (n6397) Balmer lines: equivalent widths (EW) and profiles example: NGC 6397 - member RGB star NGC 6397 - ILS 47 Tuc - ILS Broadened by hot stars Age/Metallicity: Old/metal-rich = red (cool) Young/metal-poor = blue (hot)

  30. Training Set: step 0 - observed CMD (n6397) Balmer lines: H, H, H, H — EW and profiles —ILS NGC 6397 —synthesized lines from the observed CMD (w/ BHB) (w/o BHB) Age/Metallicity + HB morphology Observational constraint: flux in / color of HB (otherwise, HB is a wild card…Age? mass loss?)

  31. Training Set: step 0 - observed CMD (n6397) NGC 6397: Derived abundances — consistent with results from single stars! ILS analysis [Fe/H] x (x) N-lines /N[X/Fe] [X/Fe] Cr 2.93 3 0.26 0.18 -0.53 FeI 5.30 63 0.26 0.03 -2.2 -1.97 FeII 5.35 8 0.35 0.12 -2.15 -2.20 NiI 4.18 2 0.09 0.09 0.13 a-elements: MgI 5.47 4 0.45 0.23 0.10 CaI 4.43 8 0.15 0.06 0.28 0.64 TiI,II 3.20 13 0.38 0.11 0.37 0.36 n-capture BaII 0.02 7 0.22 0.08 0.02 0.10 (Castihlo 2000)

  32. RECAP — What (we think) we know from analysis of a RESOLVED GC (n6397): 1. the composite stellar models can work! 2. We have tools to identify problems! Balmer lines  Teff (CMD: reddening, {age, [Fe/H]}, HB morph) FeI (EW, EP, ) FeI vs Fe II log g (CMD: giants vs dwarfs, age) (ionized lines sensitive to N(e-))

  33. Training Set: step 1 - isochrone CMD (47Tuc) What if the cluster is unresolved? (e.g. NGC 1313 -379) GCs are a single age population! Isochrones - stellar evolution models predict cluster CMD at given age. Padova (Girardi et al 2000) BaSTI (Pietrinferni et al 2004) + Kroupa IMF (Kroupa & Boily 2002), flattens below 0.5M + Normalize #’s of stars to observed Mv (In the case of a faint cluster, don’t make boxes w/ <1 star)

  34. Training Set: step 1 - isochrone CMD (47Tuc) Do they reproduce the CMD? 2 problems: 1. mass segregation (for training set) 47Tuc 2. AGB bump (general) Spitzer & Hart 1971 MW: eg. Ferraro 1997 LMC: eg.Grijs et al 2002 Schiavon et al 2002

  35. Training Set: step 1 - isochrone CMD (47Tuc) Do they reproduce the CMD? Adjustments: 1- remove stars 3 mag below turn-off. 2- increase fraction in AGB bump.

  36. Training Set: step 1 - isochrone CMD (4 GCs) 1- Balmer lines - H, H, H, H EW and profile Models: age = 6.3 Gyr z = 0.0001-0.01 * note blends

  37. Training Set: step 1 - isochrone CMD (4 GCs) 1- Balmer lines - H, H, H, H EW’s Color = AGE NGC 6397 match: Age ≈ 6.3 Gyr [A/H] ≈ -2 Models change very little > 3 Gyrs

  38. Training Set: step 1 - isochrone CMD (4 GCs) 1- Balmer lines - H, H, H, H EW’s and profiles Models: age = 10 Gyr z = 0.0001-0.01 *note blends are worse!! (metal rich GC) Need to synthesize blended lines

  39. Training Set: step 1 - isochrone CMD (4 GCs) 1- Balmer lines - H, H, H, H EW’s 47Tuc match: Age ≈ 10-12 Gyr [A/H] ≈ -0.9

  40. Training Set: step 2 - isochrone CMD (47 Tuc) 2- FeI & FeII (Padova, unadjusted isochrones)

  41. Training Set: step 2 - isochrone CMD (47 Tuc) 2- FeI & FeII [FeI/H]  input [A/H]  input age (Padova, unadjusted isochrones)

  42. Training Set: step 2 - isochrone CMD (47 Tuc) 2- FeI & FeII [FeI/H]  input [A/H]  input age +/-0.1 !! at <1 Gyr: young = hot modeled lines=weak. at >1 Gyr: models not changing much (Padova, unadjusted isochrones)

  43. Training Set: step 2 - isochrone CMD (47 Tuc) FeI checks: no FeI slope w/ EP if: age > 2 & [A/H] < -1 w/  if: age > 3 w/ EW if: age > 3 Gyrs

  44. Training Set: step 2 - isochrone CMD (47 Tuc) 2- FeI & FeII [FeI/H]  input [A/H]  input age +/- 0.05 !! [FeII/H]  input [A/H]  input age (Padova, unadjusted isochrones)

  45. Training Set: step 2 - isochrone CMD (47 Tuc) The age-metallicity degeneracy!

  46. Training Set: step 2 - isochrone CMD (47 Tuc) 2- FeI & FeII [FeI/H]  input [A/H]  input age +/- 0.05 !! [FeII/H]  input [A/H]  input age expected age to increase giant:dwarf… g … N(e-). (Padova, unadjusted isochrones)

  47. Training Set: step 2 - isochrone CMD (47 Tuc) 2- FeI & FeII [FeI/H]  input [A/H]  input age +/-0.05 !! (statistical) [FeII/H]  input [A/H] ( N(e-))  input age [Fe/H]=[FeII/H]: [Fe/H]  -0.6 age = 5-16 Gyrs Best FeI solution: [Fe/H]  -0.6 (10Gyr, [A/H]=-0.68) (Padova, unadjusted isochrones)

  48. Training Set: step 2 - isochrone CMD (47 Tuc) Abundance results for 47Tuc! Isochrone analysis (w/ mass segregation + boosted AGB dump) CONSISTENT with solution from individual stars. unambiguous[Fe/H]=0.7 1- iron peak x (x)  N-lines[X/Fe][Fe/H] [X/Fe](C’04) Sc II 2.53 ... 1 +0.13 +0.13 V I 3.40 0.31 5 +0.11 +0.05 Cr I 4.87 0.14 3 -0.19 +0.11 Mn I 4.49 0.30 4 -0.31 -0.29 Fe I 6.78 0.24 71 -0.73 -0.67, -0.79 (KI’03) Fe II 6.81 0.15 8 -0.70 -0.56 Ni I 5.47 0.18 12* -0.05 +0.06 Carretta et al 2004 Kraft & Ivans 2003 (Padova, 10Gyr, [A/H]=-0.68, adjusted)

  49. Training Set: step 2 - isochrone CMD (47 Tuc) Abundance results for 47Tuc! (Padova, 10Gyr, [A/H]=-0.68, adjusted)

  50. Training Set: step 2 - isochrone CMD (47 Tuc) Abundance results for 47Tuc! 2. -elements x (x)  N-lines[X/Fe] [X/Fe](CG04) [O I] 8.45 ... 1 +0.45 +0.23 Mg I 7.02 ... 1 +0.17 +0.40 Si I 7.16 0.21 6 +0.33 +0.30 Ca I 5.81 0.24 12 +0.19 +0.20 Ti I 4.55 0.24 13 +0.34 +0.26 Ti II 4.68 0.16 3 +0.44 +0.38 3- non-alpha, light elements Na I 5.97 0.19 3 +0.38 +0.23 Al I 6.19 0.02 2 +0.43 Carretta & Gratton 2004  (Padova, 10Gyr, [A/H]=-0.68, adjusted)

More Related