1 / 21

E. Roussos 1 , N. Krupp 1, P. Kollmann 1 , M. Andriopoulou 1 ,

Energetic charged particle absorption signatures in Saturn's magnetosphere: observations and applications. E. Roussos 1 , N. Krupp 1, P. Kollmann 1 , M. Andriopoulou 1 , C. Paranicas 2 , D.G Mitchell 2 , S.M. Krimigis 2 , 3 , M.F. Thomsen 4.

miracle
Download Presentation

E. Roussos 1 , N. Krupp 1, P. Kollmann 1 , M. Andriopoulou 1 ,

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Energetic charged particle absorption signatures in Saturn's magnetosphere: observations and applications E. Roussos 1, N. Krupp 1, P. Kollmann 1, M. Andriopoulou1, C. Paranicas2, D.G Mitchell 2, S.M. Krimigis2, 3, M.F. Thomsen4 1: Max Planck Institute for Solar System Research, Katlenburg-Lindau, Germany 2: John Hopkins Applied Physics Laboratory, Laurel, Maryland, USA 3: Office of Space Research and Technology, Academy of Athens, Greece 4: Los Alamos National Laboratory, USA

  2. Electron Microsignatures • Localizeddropouts in energeticelectronfluxes, causedbyparticleabsorption on moonsor rings • Depth of dropoutisdependent on the angular separationfromtheabsorbingbody (typicallydecreasing) Jones et al. (2006) 0 deg 30 deg Angular separation

  3. Microsignature formation • Plasmaabsorbinginteraction (e.g. similartoEarth‘sMoon – S.W. interaction) • Plasma absorbingmoonsat Saturn (Mimas, Tethys, Dione, Rhea…) • Main features: • Formation of plasma cavity (wake) &interactionregiondownstream • Refillingprocesses of thewake

  4. Wake refilling I • Alongthefield (mosteffective): • Potentialdrops, fieldalignedparticleacceleration, two-streaminstability… • Does not workforenergeticelectrons (abovefewkeV) atSaturn´smoons: Low energyelectrons Wake / Accelerationregion Particleflow High energyelectrons Khurana et al. (2008)

  5. Wake refilling II • 2. Perpendiculartothefield (lesseffective): • Electricfields due topressuregradients, deviationfromchargeneutrality • Evenlesseffectiveforenergeticparticles Tethys wakecrossing Khurana et al. (2008) • Magneticdrifts of energeticparticlesoccur on lines of equalBm • Energeticparticleshavethetendencytobeexcludedfromthewake

  6. Electron microsignatures Saturn Dione position during absorption 80o position during detection Cassini orbit Orbit of Dione expected detection position Day 122, 2005

  7. Studies • Refilling of microsignatures • Displacement of microsignatures

  8. Magnetosphericdiffusion (I) Day 2005/258 06:37 UT Tethys (28-37 keV) DLL ~ 1.5 10-9 Rs2/s (Van Allen et al., 1980, JGR)

  9. Magnetospheric diffusion (II) Roussos et al. (2007)

  10. Studies • Refilling of microsignatures • Displacement of microsignatures

  11. Typesofdisplacements (A) ORGANIZED (B) COMPLEX • Displacement origin: • Dipole assumption insufficient • Magnetospheric electric fields

  12. Magneticfieldmodels (I) Insufficientmapping of equatorial microsignature locationwhenusing a dipole? Model fieldlinesbased on: GiampieriandDougherty (2005) Te Di • Succesfulltracingcanhelpsetconstrains on field model inputs: • Currentsheetboundaries/dimensions • Plasma/energeticparticleparameters of ring current • Solar wind parameters, magnetopausedistance

  13. Magneticfieldmodels (II) • Example: • DOY 2008-168/ 40 deglatitude • 2 degdownstream of Dione • Inwardsdisplacedassuming a dipole Succesfulltracingwith: Currentsheet model + magnetopausescalinglawsbyBunce et al. (2006), (MP at 21.3Rs) + currentsheetthickness of 2.4-2.5 Rs K. Khurana‘s model (AGU, 2006) for SW dynamicpressurethatcorrespondsto a MP distance of 21.5 Rs Results not alwaysconsistentfrom different magneticfieldmodels .

  14. Magneticfieldmodels (III) • Onlypartofthesolution • Displacementsvisible also atequatoriallatitudes • Currentsheetperturbationexplainsonlyinwarddisplacements • Drift shellsplitingweak(10-15% differencewouldberequiredbetweenday/night |B| atconstant radial distance & latitude) • Energydependentdisplacements, complexdisplacementprofilescannotbeexplained • Magnetospheric electricfieldsnecessary

  15. ElectricFields (I) Tethys / Dione • Displacement calculation corrected for current sheet perturbation • On average: • outward at noon • inward at midnight • smaller amplitudes at dawn-dusk • Consistent with a noon-midnight electric field

  16. ElectricFields (II) ORGANIZED COMPLEX

  17. ElectricFields (III)(noontomidnightelectricfield) • Variousmethods for electricfieldestimation, eg: • Range: 0.1 – 1.0 mV/m • Method not applicable for small displacements • Other methods being tested currently • Pointing of E-field can also be set as free parameter

  18. Electric Fields (IV)(magnetospheric dynamics) Roussos et al., (2010) • Complex displacement profilesareindicative of localdynamics • Microsignatureageenergydispersion + energydispersion in displacement  radial velocities/azimuthalelectricfields in thesedynamicregions

  19. Electric Fields (IV)(magnetospheric dynamics) Organized Complex Ratio: Complex/Organized Complex profiles relevant to injections ? (Chen and Hill 2008; Mueller et al. 2010)

  20. Additional/futureapplications • Plasma composition/chargedstates(Selesnickand Cohen, 2009) • Bimodaldiffusion(Selesnickand Cohen, 1993) • Energeticparticlesources(Paranicas et al. 1997) • Backwardstracing of microsignatures withmodelsforelectric/magneticfields • Organizationas a function of SKR longitudeat Saturn • Combinedinjection/microsignaturestudies • Applicationsto Jovian magnetosphere • Multi-instrument studies • Interdisciplinaryscience (detection/characterizationof ring arcs etc.) • +++ • Moon interactionsignaturesgiveusthecapabilitytoindirectlyperform ´´multi-point´´ observations in themagnetospheres of outerplanets.

  21. Instrumentation • Energeticparticledetector • Lowestenergy: Wheremagneticdriftsstarttobeimportant(time dispersioneffectsof microsignatures becomevisible) • Upperenergy: Gradient/curvaturedriftscancel corotation (displacementsattheseenergies sensitive toweakelectricfields) • Time resolution: Seconds(most microsignatures last 1-2 minutesat a givenenergyrange) • Energyresolution: dE/E~0.1, 10 energychannelsat least (time/energydispersioneffectsof microsignatures becomevisible) • Pitch angle coverage: Spinning sensorsprobably not sufficient(difficulttocover all pitchangles in 1-2 minutes)

More Related