1 / 32

The Values of sin  , cos  , tan 

The Values of sin  , cos  , tan . Quadrants and angles in the unit circle. y. 90 °. Quadrant II. Quadrant I. 0 °. 180 °. x. 360 °. Quadrant IV. Quadrant III. 270 °. The Values of sin  , cos  , tan . Cartesian plane can be divided into four parts called quadrants .

Download Presentation

The Values of sin  , cos  , tan 

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The Values of sin , cos, tan 

  2. Quadrants and angles in the unit circle y 90° Quadrant II Quadrant I 0° 180° x 360° Quadrant IV Quadrant III 270° The Values of sin , cos, tan  • Cartesian plane can be divided into four parts called quadrants. • Quadrants are named in the anticlockwise direction.

  3. P The Values of sin , cos, tan  Quadrants and angles in the unit circle y • Angle  is measured by rotating the line OP in the anticlockwise direction from the positive x-axis at the origin, O.  x O

  4. Verify sin  = y-coordinate in quadrant I of the unit circle P (x, y) y x The Values of sin , cos, tan  y sin  = = = y 1  x Q O  sin  = y-coordinate

  5. Verify cos  = x-coordinate in quadrant I of the unit circle The Values of sin , cos, tan  y cos  = = = x P (x, y) 1  y x x Q O  cos = x-coordinate

  6.  tan = The Values of sin , cos, tan  Verify tan  = in quadrant I of the unit circle y tan  = = P (x, y) 1  y x x Q O

  7. Determine whether the value is positive or negative y x The Values of sin , cos, tan  • Quadrant I = All positive sin All • Quadrant II = sin  positive II I IV III • Quadrant III = tan  positive tan cos • Quadrant IV = cos  positive

  8. Example 1: sin 213° • Sin  is positive in quadrant II. Not quadrant II The Values of sin , cos, tan  Determine whether the value is positive or negative y • The angle 213° lies in quadrant III. 213° x O • Therefore, the value of sin 213° is negative.

  9. Example 2: cos 321° • Cos  is positive in quadrant IV. It is quadrant IV. The Values of sin , cos, tan  Determine whether the value is positive or negative y • The angle 321° lies in quadrant IV. 321° x O • Therefore, the value of cos 321° is positive.

  10. Example 3: tan 123° • Tan  is positive in quadrant III. Not quadrant III The Values of sin , cos, tan  Determine whether the value is positive or negative y • The angle 123° lies in quadrant II. 123° x O • Therefore, the value of tan 123° is negative.

  11. Example 4: sin 32° • All positive in quadrant I. It is quadrant I. The Values of sin , cos, tan  Determine whether the value is positive or negative y • The angle 32° lies in quadrant I. 32° x O • Therefore, the value of sin 32° is positive.

  12. Determine the values of sine, cosine and tangent for special angles • sin 45° =  45° • cos 45° = 1 45° 1 The Values of sin , cos, tan  • tan 45° = 1

  13. Determine the values of sine, cosine and tangent for special angles • sin 30° = 30° • cos 30° = 2 • tan 30° = 60° 1 The Values of sin , cos, tan 

  14. Determine the values of sine, cosine and tangent for special angles • sin 60° = 30° • cos 60° = 2 • tan 60° = 60° 1 The Values of sin , cos, tan 

  15. Determine the values of sine, cosine and tangent for special angles y (0, 1) x O (–1, 0) (1, 0) (0, –1) The Values of sin , cos, tan 

  16. Summary: The Values of sin , cos, tan  Determine the values of sine, cosine and tangent for special angles

  17. Question 1: Calculate the values of the following: 7 sin 90° + 4 cos 180 ° Solution: The Values of sin , cos, tan  Determine the values of sine, cosine and tangent for special angles 7 sin 90° + 4 cos 180 ° = 7 × (1) + 4 × (–1) = 7 – 4 = 3

  18. Values of angles in quadrant II y P x O The Values of sin , cos, tan     = corresponding angle in quadrant I between x-axis and line OP

  19.    where  = 180° –  sin  = + sin  cos  = – cos  tan  = – tan  P  = – 90° The Values of sin , cos, tan  Values of angles in quadrant II y   x O X

  20. Values of angles in quadrant III    where  =  – 180° sin  = – sin  cos  = – cos  tan  = + tan  P  = 270°– The Values of sin , cos, tan  y  x  O X

  21. Values of angles in quadrant IV    where  = 360° –  P sin  = – sin  cos  = + cos  tan  = – tan   = – 270° The Values of sin , cos, tan  y  x  O X

  22. Finding the value of an angle Solution: y x O P The Values of sin , cos, tan  Question 1: Find the value of sin 231°. • 231°  quadrant III • sin 231°  negative • sin 231° = – sin (231° – 180°) 231° = – sin 51°  = – 0.7771

  23. Solution: y x O P The Values of sin , cos, tan  Finding the value of an angle Question 2: Find the value of cos 303° 17‘. • 303° 17'  quadrant IV • cos 303° 17'  positive • cos 303° 17' = cos (360° – 303° 17') 303° 17' = cos 56° 43'  = 0.5488

  24. Solution: y P x O The Values of sin , cos, tan  Finding the value of an angle Question 3: Find the value of tan 117° 13'. • 117° 13'  quadrant II • tan 117° 13'  negative • tan 117° 13' = – tan (180° – 117° 13')  117° 13' = – tan 62° 47' = – 1.945

  25. Finding angles between 0° and 360° Solution: P y y P x x 72° 72° x x O The Values of sin , cos, tan  Question 1: For sin x = 0.9511 where 0°≤x≤ 360°, find the value of x. • Corresponding acute angle, x = 72° • 0.9511  positive • Therefore, the acute angle is in quadrant I or II. and • Quadrant I: x = 72° 180° – 72° = 108° • Quadrant II: x =

  26. Finding angles between 0° and 360° Solution: y y P x 60° 12' x x x O 60° 12' P The Values of sin , cos, tan  Question 2: For tan x = – 1.746 where 0°≤x≤ 360°, find the value of x. • Corresponding acute angle, x = 60° 12' • – 1.746  negative • Therefore, the acute angle is in quadrant II or IV. and • Quadrant II: x = 180° – 60° 12' = 119° 48' • Quadrant IV: x = 360° – 60° 12' = 299° 48'

  27. Solution: y y P x 60° x x x O 60° P The Values of sin , cos, tan  Finding angles between 0° and 360° Question 3: For cos x = 0.5 where 0°≤x≤ 360°, find the value of x. • Corresponding acute angle, x = 60° • 0.5  positive • Therefore, the acute angle is in quadrant I or IV. and • Quadrant I: x = 60° 360° – 60° = 300° • Quadrant IV: x =

  28. Solve problems involving sine, cosine and tangent Question: In the diagram below, HMS and JHN are straight lines. H is the midpoint of JN. Given that HM = 12 cm, MN = 13 cm and FJ = 4 cm, calculate: N • the length of HN, • the value of cos x°, • the value of tan y°. x° y° S H M F J The Values of sin , cos, tan 

  29. Solution: Pythagoras’ theorem The Values of sin , cos, tan  Solve problems involving sine, cosine and tangent (a) N 132 – 122 13 cm HN2 = x° = 169 – 144 = 25 y° S H 12 cm M HN = 5 cm F J 4 cm

  30. HMS is a straight line The Values of sin , cos, tan  Solve problems involving sine, cosine and tangent Solution: (b) N x° = 180° – HMN x° cos x° = – cos HMN y° S H M = F J

  31. JHN is a straight line The Values of sin , cos, tan  Solve problems involving sine, cosine and tangent Solution: (c) N y° = 180° – FHJ x° tan y° = – tan FHJ y° S H M = F J

  32. The End

More Related