1 / 16

Update on T2.4: Gd-lined plastic scintillator detector

Update on T2.4: Gd-lined plastic scintillator detector. Raffaella De Vita INFN November 21 st 2012. Outline. Detector Concept and Prototype Layout Progresses since last SCINTILLA meeting Tests of neutron capture medium and improvements of neutron capture efficiency

misae
Download Presentation

Update on T2.4: Gd-lined plastic scintillator detector

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Update on T2.4: Gd-lined plastic scintillator detector Raffaella De Vita INFN November 21st 2012

  2. Outline • Detector Concept and Prototype Layout • Progresses since last SCINTILLA meeting • Tests of neutron capture medium and improvements of neutron capture efficiency • Development and implementation of new readout electronics and user interfaces • Data outputs and format • Preparation of DL2.4.2 • Detector layout for next technology benchmark • Future activity and time schedule SCINTILLA

  3. Detector Concept and Prototype Layout 5” PMTs (20x40x80 cm3) • LAYOUT: • Plastic scintillator layers, wrapped in reflective foils and interlayered by Gd-coated foils • VME-based DAQ (commercial boards): • Total volume = 64 liters • Front surface = 3200 cm2 • OPERATION: • Detect presence of radioactive material via increase of pulse rates • Discriminate gammas and neutrons by different event topology: • - E>5 MeV • - Coincidence of Prompt-delayed events SCINTILLA

  4. Neutron Absorber Test Setup • Validation of simulation results on Gd-oxide amount via measurement in dedicated test setup • Measurements of neutron capture time for different thickness of the scintillator and Gd-Oxide • Reduction of capture time by a factor 2.5 for an increase of absorber thickness of a factor 4 ➝ will be implemented for February technology benchmark • Reduction of capture time by a factor 1.5 for smaller scintillator thickness (1 cm vs. 2 cm) • ➝ will be implemented in final prototype 2cm-thick scintillator 1cm-thick scintillator SCINTILLA

  5. DAQ Layout Hardware instrumentation Cables and connectionswith the detector Temperature monitoring embedded on the HV power supply boards SCINTILLA

  6. The acquisitionprogramata glance… • At startup: • Checks the status of the hardware (enviromentalvariables) • Sets the HV channels to poweron the PMTs • Properlyinitializes the digitizerboard (thresholds, acquisition mode, integrationwindow, …) • Duringacquisition: • Monitors the rates of photon-like and neutron-likeevents • Notifiesneutron/photonalarmsifratesexceedthreshold • Writes data to output files (N42.42 and “expert” formats) • At the end of the acquisition: • Analyzes the data (energy and time distributions) • Shows summary plots on the Data Viewer SCINTILLA 6

  7. First Tests Measurement of rates, spectra and prompt-delayedcoincidences with AmBe source SCINTILLA 7

  8. N42.42 XML File structure The XML file is one of the output of our system. The planned XML file format has a structure divided into 3 parts: The HEADER: It describes the run taken. There is the list of parameters and definitions used for the analysis, followed by the environmental variables The CENTRAL PART: It contains all the data rates, counts and alarms recorded with acertain frequency The END of File: Summary of all the counts, mean rates AND all the alarms appeared along the run selected by radiation hypothesis (n and gamma) SCINTILLA 8

  9. XML Header example (.xml file) <!– HEADER --> <?xml version="1.0" encoding="UTF-8"?> <?xml-model href="http://physics.nist.gov/N42/2011/N42/schematron/n42.sch" type="application/xml"?> <RadInstrumentData> <Remark> EXAMPLE XML FILE 2011 version </Remark> <Remark> ===== HEADER ===== </Remark> <Remark> Measurement Date: 003-11-22T23:45:00.6-07:00 and Location: Genova </Remark> <RadDetectorInformation id="RPM INFN-ANSALDO"> <RadInstrumentManufacturerName>INFN-ANSALDO</RadInstrumentManufacturerName> <RadInstrumentIdentifier> Aa1 </RadInstrumentIdentifier> <RadInstrumentModelName> Prototype 1 </RadInstrumentModelName> <!-- RadInstrumentDescription, RadInstrumentVersion --> <RadInstrumentClassCode>Portal Radiation Monitor</RadInstrumentClassCode> <RadInstrumentCharacteristics> <Characteristic> <CharacteristicName> Arm1 </CharacteristicName> <CharacteristicValue>40</CharacteristicValue> <CharacteristicValueUnits>centimeters</CharacteristicValueUnits> <CharacteristicValueDataClassCode>double</CharacteristicValueDataClassCode> </Characteristic> </RadInstrumentCharacteristics> </RadDetectorInformation> <RadDetectorInformation id="Aa1"> <!-- DNDO official name to be searched --> <RadDetectorName>Bar1 -Aa1-</RadDetectorName> <RadDetectorCategoryCode>Gamma-Neutron deiscriminator</RadDetectorCategoryCode> <RadDetectorKindCode>PVT</RadDetectorKindCode> <RadDetectorDescription> Comment about single bar </RadDetectorDescription> <RadDetectorLengthValue units="cm">40</RadDetectorLengthValue> <RadDetectorWidthValue units="cm">1</RadDetectorWidthValue> <RadDetectorDepthValue units="cm">10</RadDetectorDepthValue> </RadDetectorInformation> <EnergyWindows id="GammaWindowSettings”> <WindowStartEnergyValues>0 0 100</WindowStartEnergyValues> <WindowEndEnergyValues>100 3000 400</WindowEndEnergyValues> </EnergyWindows> <Remark> User: Operator </Remark>

  10. XML Center and End of File example (.xml file) <!-- END of File --> <Remark> ==== END of File ==== </Remark> <AnalysisResults type="Arm1"> <AnalysisComputationDuration> PT2S </AnalysisComputationDuration> <GrossCountAnalysisResults id="Neutrons" radDetectorInformationReference="Bar1"> <TotalCountsValue> 3045 </TotalCountsValue> <AverageCountRateValue units="CPS"> 100 </AverageCountRateValue> <AverageCountRateUncertaintyValue units="CPS"> 0.1 </AverageCountRateUncertaintyValue> </GrossCountAnalysisResults> <GrossCountAnalysisResults type="Photons"> <TotalCountsValue> 3045 </TotalCountsValue> <AverageCountRateValue units="CPS"> 200 </AverageCountRateValue> <AverageCountRateUncertaintyValue units="CPS"> 1.2 </AverageCountRateUncertaintyValue> </GrossCountAnalysisResults> <RadAlarm id="Neutrons" radDetectorInformationReference="Bar1"> <RadAlarmDescription> Average rates alarms for Neutrons: 3 </RadAlarmDescription> </RadAlarm> <RadAlarmid="Photons" radDetectorInformationReference="Bar1"> <RadAlarmDescription> AverageratesalarmsforPhotons: 0 </RadAlarmDescription> </RadAlarm> <AnalysisResultDescription> PossibleState: Probable NORM. Alarm activeforphotonsradiations: NO. Alarm activeforneutronradiation: YES. Errormessages: NO. Detectorstatus: ACTIVE. </AnalysisResultDescription> </AnalysisResults> </RadInstrumentData> <!-- CENTRAL PART --> <Remark> ==== CENTRAL PART ==== </Remark> <!-- Per le environmental variables ci pensiamo poi --> <!-- Background --> <RadMeasurement> <MeasurementClassCode>Background</MeasurementClassCode> <StartDateTime> 003-11-22T23:45:00.6-07:00 </StartDateTime> <RealTimeDuration> PT100M </RealTimeDuration> <GrossCountsradDetectorInformationReference="Bar1" energyWindowsReference="GammaWindowSettings"> <CountData> 5 22 200 </CountData> <!-- With Gammawindows --> </GrossCounts> <GrossCountsradDetectorInformationReference="Bar2" > <CountData> 5 </CountData> <!-- Without Gammawindows --> </GrossCounts> </RadMeasurement> <!-- NEUTRONS --> <RadMeasurementGroup id="Neutrons"/> <!-- The same for Photons --> <RadMeasurement> <MeasurementClassCode> Measurement Run </MeasurementClassCode> <StartDateTime> 003-11-22T23:45:00.6-07:00 </StartDateTime> <RealTimeDuration> PT0.1S </RealTimeDuration> <GrossCountsradDetectorInformationReference="Bar1"> <CountData>5 22 200</CountData> </GrossCounts> <AverageCountRateValue> 12 </AverageCountRateValue> <AverageCountRateUncertaintyValue> 0.2 </AverageCountRateUncertaintyValue> </RadMeasurement> SCINTILLA 10

  11. Preparation of DL2.4.2 • Deliverable 2.4.2: Technical Design of the Gd-Lined Plastic Scintillator Detector with Integrator Initial Guidelines for the Integration and Deployment of the Technology • Deadline: 31/12/2012 • Updated detector design: • Documentation of neutron capture studies➝ first draft available • Documentation of new electronic readout system ➝ first draft available • Documentation of updated detector layout ➝ in progress • Implementation of Integrator Guidelines: • Documentation of data output and N42.42 output format ➝ in progress • Other guidelines ➝to be started SCINTILLA 11

  12. System Layout for Technology Benchmark • One pillar configuration • System size: • Detector: 60x30x195 cm3 • Electronic box: 60x15x40 cm3 • System console: 1 pc • Services: • Power line: 220 V, XXX W • One optical fiber from electronic box to system console (5 m, can be increased) • Ethernet line from system console to benchmarking server (?) source ELECTRONICS DETECTOR Optical Fiber to System Console direction of moving source 220 V SCINTILLA 12

  13. Future Activity and Time Schedule • Work Plan: • Complete modifications of neutron absorber in the detector prototype • Complete the development of the new electronic readout and user interface • Complete he implementation of the N42.42 output format • Implement integration requirements for technology benchmark • Test new system with gamma and neutron sources in INFN lab SCINTILLA 13

  14. backup SCINTILLA

  15. XML example (web-browser) The final printed draft of the XML file is: EXAMPLE XML FILE 2011 version ===== HEADER ===== Measurement Date: 003-11-22T23:45:00.6-07:00 and Location: Genova INFN-ANSALDO Aa1 Prototype 1 Portal Radiation Monitor Arm1 40 centimeters double Bar1 -Aa1- Gamma-Neutron deiscriminator PVT Comment about single bar 40 1 10 0 0 100 100 3000 400 User: Operator ==== CENTRAL PART ==== Background 003-11-22T23:45:00.6-07:00 PT100M 5 22 200 5 Measurement Run 003-11-22T23:45:00.6-07:00 PT0.1S 5 22 200 12 0.2 ==== END of File ==== PT2S 3045 100 0.1 3045 200 1.2 Average rates alarms for Neutrons: 3 Average rates alarms for Photons: 0 Possible State: Probable NORM. Alarm active for photons radiations: NO. Alarm active for neutron radiation: YES. Error messages: NO. Detector status: ACTIVE. SCINTILLA 15

  16. Readout and Data Processing Scheme SCINTILLA

More Related