660 likes | 906 Views
Valuation of Cash Flows. Chapter 3.1-3.3 Chapter 4. outline. F inancial costs and benefits The Time Value of Money Present value and future value Valuation of streams of cash flows Valuation of Annuities and Perpetuities Further Examples. Financial Costs and Benefits.
E N D
Valuation of Cash Flows Chapter 3.1-3.3 Chapter 4
outline • Financial costs and benefits • The Time Value of Money • Present value and future value • Valuation of streams of cash flows • Valuation of Annuities and Perpetuities • Further Examples
Identifying Costs and Benefits Can we identify the costs and benefits of the following projects? • Advertising campaign • Lowering production cost • Management training program What information is required in order to measure or value the associated costs and benefits?
The Important Role of Market Prices Suppose you could trade 10 ounces of platinum and receive 20 ounces of gold, would you trade? • The price of one ounce of gold is $250 • The price of one ounce of platinum is $550 What if the jeweler thought that the price of gold was too low?
Market Prices as Cash Value Suppose the jeweler can produce $10,000 worth of jewelry from 20 ounces of gold but only $6,000 worth of jewelry from 10 ounces of platinum. The Jeweler should still not trade 10 ounces of gold for 20 ounces of platinum – why? When a good is trades in a “competitive market” (which means that you are free to buy and sell the good at the same price), price determines the cash value of the good
Non-Competitive Markets When a good is not traded in a competitive market (which means that you buy and sell the good at different prices) its value is determined by your own personal preferences (or benefit) from obtaining the good. Suppose that just before the holidays your boss surprises you by offering all employees the choice between a brand new gardening tool-kit and $375. A brand-new tool-kit costs $450 in stores and can be sold for $400 through one of the internet websites. What would you choose?
Non-Competitive Markets If you have a garden at home and you were planning on buying the kit anyway then you would value this gift at $450. Alternatively, if you were not planning on buying the kit in the first place then you would value the gift at $375. When the market for the good is not competitive, the cash value of the economic opportunity depends on your preferences (and market prices)
Timing of Payments For most decisions in life (and also financial decisions) the costs and benefits occur at different points in time. • MBA • Marriage • Mortgage Consider the investment opportunity • $100,000 today • $105,000 in one year Are we “comparing apples to oranges”? How do we compare payments in different times?
Interest Rates Suppose that the current annual interest rate is 7%. This means that on a current deposit of $100 we will earn a total of $7 of interest over the course of the year leading to a total of $107 in our bank account. We refer to this as the risk-free interest rate and we denote this rate by rf= 7% or 1+rf=1.07 This means that we can exchange (without any risk) $1 today(or at time “0”) for $1.07 received in one year (or at time “1”)
Comparing Payments Across Time Back to our investment opportunity. We know that thebenefit is $105,000 in one year. Can we calculate the cost of this investment in dollars paid in one year instead of dollars paid today in order to compare the two? By using the risk-free interest rate of 7%: The net value of the investment in terms of “dollars in one year” $105,000-107,000= - $2,000
Comparing Payments Across Time Back to our investment opportunity (again…). We will lose $2000 “dollars in one year” if we choose this investment opportunity, but how much will we loose in terms of “dollars today”? We know that thecost is $100,000 today. The benefit of this investment in dollars paid todayinstead of dollars in one year is By using the risk-free interest rate of 7%: The net value of the investment in terms of “dollars today” is $98,130.84-100,000= - $1,869.16
Comparing Payments Across Time We valued the investment opportunity in terms of “dollars today” and “dollars in one year” and both led us to the conclusion not to invest in the project since it leads to a net loss. Is it always true that both approaches lead to the same conclusion? As long as we convert costs and benefits to the same point in time, we can compare them to make a decision Not surprisingly The net value of the investment in terms of “dollars today” and its value in terms of “dollars in one year” satisfy - $1,869.16 (1.07) = $2,000
The Net Present Value Decision Rule The term PresentValue or PV refers to the fact that value is calculated in today’s dollars The Net Present Value (NPV) of a project or investment opportunity is the difference between the present value of benefits and the present value of costs Net Present Value (NPV) If we use positive cash-flows to represent benefits and negative cash flows to represent costs then We accept projects with positive NPV
The Time Line The first (and very important) tool to develop is the ability to represent the stream of cash flows of an economic opportunity on a time line.
The Time Line Problem: Suppose you must pay tuition of $10,000 per year for the next two years. Your tuition payments must be made in equal installments at the start of each semester. What is the timeline of your tuition payments?
Moving Cash Flows Across Time When comparing cash flows obtained in different points in time we need to first convert all cash flows to one point in time so that we do not “compare apples to oranges” Rule 1 It is only possible to compare or combine values at the same point in time Rule 2 To move a cash flow forward in time, we must compound it Rule 3 To move a cash flow back in time, we must discount it
Compounding Cash Flows Suppose we have $1,000 today and we want to determine the equivalent amount in one year’s time. If the annual risk-free interest rate is 10% then we can calculate: ($1000 today)(1.10) = $1100 in one year What if we were interested in the equivalent amount in two year’s time? Given that the annual risk-free rate for two years is also 10% then we can calculate:
Future Value The value of a cash flow that is moved forward in time is known as its future value When interest rate is 10% then, $1210 is the future value of $1000 two years from today $1100 is the future value of $1000 one year from today
Future Value If we were interested in the future value of $1000 three years from today we would simply multiply one more period Future Value of a Cash Flow “$C” “n” years from today, given interest “r” The future value is increasing in the interest rate “r” and the number of periods “n”.
Discounting Cash Flows Suppose we anticipate having $1,000 in one year and we want to compute the value today of this payment. If the annual risk-free interest rate is 10% then we can calculate: ($1000 in one year)/(1.10) = $909.09 today Suppose we need the money now…does our preference for money today matter for this decision between $909.09 today or $1000 tomorrow? Suppose you anticipate receiving $1000 in two years. Given that the annual risk-free rate for two years is also 10% then we can calculate:
Present Value If we were interested in the present value of $1000 received three years from today we would simply multiply one more period Present Value of a Cash Flow “$C” Received “n” years from today, given interest “r” The present value is decreasing in the interest rate “r” and the number of periods “n”
Savings problem Suppose you plan to save $1000 annually in the next three years starting from today. Time line of deposits: If the interest rate on your savings account is 10%, then how much money will you have in your account three years from now?
Savings problem We are asked to find the future value of the stream of cash flows. The future value at time 3 of the payment of $1000 received at time 0: The future value at time 3 of the payment of $1000 received at time 1: The future value at time 3 of the payment of $1000 received at time 2: The future value of the stream of cash flows:
Savings problem An alternative way to find the future value of the stream of cash flows is to follow the balance on our saving account. At time 0 we have …………. in our bank account. At time 1 we have ………… in our bank account. At time 2 we have …………. in our bank account. At time 3 we have accumulated …………….
Savings problem Now suppose that you wish to invest all the money now instead of $1000 each year. What size investment is required in order to obtain the exact same amount of accumulated funds three years from now? You are asked to find the present value of the stream of cash flows. The present value of the stream of cash flows is …………….
Present Value of Stream of Cash Flows The present value of a stream of “n” cash flows of arbitrary amounts is the sum of the present value of all cash flows.
Car Loan Suppose that you need money to purchase a new car. Your uncle will lend you the money so long as you agree to pay him back within four years, and you offer to pay him the rate of interest that he would otherwise get by putting his money in a savings account. Based on your yearnings and living expenses, you think you will be able to pay him $5000 in one year (time t=1), and then $8000 each year for the next three years. If your uncle would otherwise earn 6% per year on his savings, how much can you borrow from him?
Car Loan You are asked about the present value of the stream of cash flows you plan to pay your uncle. The present value of the stream of cash flows is the sum of present values of all individual cash flows
The Future Value Present Value Link So you are asking you uncle to give up $24,890.65 now and in return receive a stream of cash flows. Your calculation indicated that your uncle should be indifferent between the two alternatives. To verify lets compare the future wealth of your uncle if he had invested instead of leant to you $24,890.65. What shall we compare this to?
The Future Value Present Value Link Future Value of a Cash Flow Stream with Present Value of PV We can alternatively calculate the balance on the saving account of your uncle if he was to save your payments for the next four years by calculating the sum of future values of all individual installments:
The Net Present Value Net Present Value (NPV) Consider the following investment opportunity: If you invest $1000 today , you will receive $500 at the end of each of the next three years. If you could otherwise earn 10% per year on your money, should you undertake the investment opportunity?
Annuitiesand Perpetuities Several of real-life situations involve streams of cash flows with “standard” structure. • Mortgages • Car loans • Retirement savings • Corporate and treasury bonds • stocks We will study the valuation of • Annuity: periodic stream of cash flows with finite life (Growing annuity has growing cash flows) • Perpetuity: annuity with infinite life (Growing perpetuity has growing cash flows)
Perpetuity The PV of a Perpetuity equals the amount of funds required today in order to generate this perpetuity. How much is required today in order to generate an annual payment of $1 starting one year from now and continuing forever if the interest rate is 8%? The present value of a perpetuity is:
Annuities The PV of an Annuity equals the amount of funds required today in order to generate this annuity. How much is required today in order to generate an annual payment of $1 starting one year from now and continuing for 10 years if the interest rate is 8%? The present value of an “n” year annuity is:
Growing Perpetuity A growing perpetuity with growth rate “g” : The Present Value of a Growing Perpetuity