160 likes | 413 Views
ShaderX7 2.4. Fast Skin Shading. John Hable , George Borshukov , Jim Hejl Shader Study ( http://cafe.naver.com/shader ) 임용 균. Introduction. 많은 게임들이 일반적인 라이팅 모델을 피부에도 적용함으로 플라스틱 같은 느낌이 나 피부 같은 느낌이 없다 . 피부는 판지와 같은 pure diffuse surface 와는 매우 다르다 . 근본적인 차이는 피부 안에서 빛들의 반사가 매우 다름에 있다 .
E N D
ShaderX7 2.4.Fast Skin Shading John Hable, George Borshukov, Jim Hejl Shader Study (http://cafe.naver.com/shader) 임용균
Introduction • 많은 게임들이 일반적인 라이팅 모델을 피부에도 적용함으로 플라스틱 같은 느낌이 나 피부 같은 느낌이 없다. • 피부는 판지와 같은 pure diffuse surface와는 매우 다르다. • 근본적인 차이는 피부 안에서 빛들의 반사가 매우 다름에 있다. • 피부는 투명도의 단계가 다른 여러 layer로 구성 되어 있다. • 피부 밑에서 빛이 어떻게 통과하는지에 대한 빠른 시뮬레이션의 구현 (PS3, Xbox 360 수준을 목표)
Background • GPU Gems 3 [d’EonGPUGems07] • Subsurface scattering • Step1 : 빛이 피부에 닿음 • diffuse light를 라이트맵에 렌더링 • Step2 : 빛이 피부 아래에서 반사 됨 • 라이트맵을블러링함으로 시뮬레이션 • Step3 : 빛이 피부 밖으로 빠져나감. 카메라에 의해 보여짐 • 블러링된 빛을 diffuse map에 multiplying함으로 시뮬레이션
Diffuse • 피부의 한 점의 diffuse를 계산하기 위해서는 그 점 주변의 들어오는 빛의 intensity를 알아야 한다. • diffusion dipole로 거의 해결되었다. [Donner05] • 빛과 점의 거리에 따라 red, green, blue의 intensity가 다른 커브를 발견. • diffusion dipole을 blur들의 합으로 분해할 수 있다. • real-time으로 실행할 수 있다. • 5번의 7x7 gaussian blur가 1번의 50x50 gaussian blur보다 빠르다. • blur 회수를 조절하여 다양한 피부 타입을나타내는것이 가능하다.
Our Contributions • blur의 samping pattern을 변경함으로 additional error를 많이 줄일 수 있었다. • d’Eon과 Leubke의 테크닉을 시뮬레이션 하지만 좀더 적은 tap을 이용한다. (~12 samples) • 두개의“링”을 이용하여 블러를 시뮬레이션 함으로 좋은 결과를 얻었다. • 각각의 링을 6섹션으로 나눔 (총 12섹션) • 섹션마다 jittered sample을 한다. • sample에 맞는 weight를 적용한다.
Our Contributions float2 blurJitteredSamples[13] = { { 0.000000,0.000000 }, { 1.633992, 0.036795 }, { 0.177801, 1.717593 }, { -0.194906, 0.091094 }, { -0.239737, -0.220217 }, { -0.003530, -0.118219 }, { 1.320107, -0.181542 }, { 5.970690, 0.253378 }, { -1.089250, 4.958349 }, { -4.015465, 4.156699 }, { -4.063099, -4.110150 }, { -0.638605, -6.297663 }, { 2.542348, -3.245901 }, }; float3 blurJitteredWeights[13] = { { 0.220441, 0.437000, 0.635000 }, { 0.076356, 0.064487, 0.039097 }, { 0.116515, 0.103222, 0.064912 }, { 0.064844, 0.086388, 0.062272 }, { 0.131798, 0.151695, 0.103676 }, { 0.025690, 0.042728, 0.033003 }, { 0.048593, 0.064740, 0.046131 }, { 0.048092, 0.003042, 0.000400 }, { 0.048845, 0.005406, 0.001222 }, { 0.051322, 0.006034, 0.001420 }, { 0.061428, 0.009152, 0.002511 }, { 0.030936, 0.002868, 0.000652 }, { 0.073580, 0.023239, 0.009703 }, };
Our Contributions • blur pass float3 totalColor = 0; float2 strectch = tex2D(StretchTextureBlurred, uv.xy).rg; float shadow = tex2D(LightMap, uv.xy).a; for (inti=0; i<=12; i++) totalColor += SubsurfaceJitterSampler(uv.xy, stretch, i);
Our Contributions • High-Z • Light map 렌더링패스에서 depth를 기록한다. • depth = dot(N, V) * 0.5 + 0.5 • High-Z를 사용하여 오직 앞면의폴리곤에blur를 적용한다. • 위의 공식에서는 depth가 0.5이상인 픽셀만 blur를 적용하면 된다. • Texture Size • Light mapblur 텍스쳐는 원래의 Diffuse texture보다 작은것을 이용한다. (512x512 fp16RGBA buffer) • Sharpness가 많이 사라지는 문제 발생 • Capture 장비일 경우 자동 Blur 현상 • 최종 합성 단계에서 diffuse map과의 합성
Our Contributions • Shadow • Light map 렌더링패스에서 shadow를 alpha channel에 포함 • lighting을 픽셀마다 두번 해야 되는 단점이 있다. • Diffuse component를 계산하는 것은 Specular component보다 저렴하므로 큰 문제는 아니다. • Light map이 블러링 되면서 자연스러운 soft shadow를 얻을 수 있다.
Specular • 피부는 실제적으로 매우 광택이 있다. • Phong모델은 적합하지 않음 • 하나의 퐁 모델이 나타내는 범위로는 비슷하게 표현이 불가능 • 적합한 Specular모델은? • 여러 개의 범위를 나타낼수 있는 모델이어야 한다. • built-in fresnel term이 있어야 한다. • grazing angle에서 specular highlight가 더 밝아야 한다. • Kelemen-Szirmay-Kalos [Kelemen01] 모델을 사용 • 그러나 비용이 비싸다.
Variation Across the Face • 얼굴의 모든 부분에 하나의 라이팅 모델을 적용하는 것은 맞지 않다. • 특정 부분은 다른 부분보다 더 밝다. • 부위마다 subsurface scattering 효과도 다르다. • Specular Map을 추가하여 Specular를 제어 한다. • 드라마틱하게 향상되지는 않지만 추천하는 방법 • Subsurfacy Map을 추가하여 subsurface scattering을 제어 • 크게 향상되지는 않지만 다른 느낌을 준다. • 다양한 느낌을 원한다면 이용 할 만 하다. (older dark-skinned male VS young white female)
Final Shader float diffuse = saturate(dot(lightVec, normal)); float finalShadow = tex2D(LightmapCombineBlur, uv.xy).w; float3 readModelColor = pow(tex2D(HeadDiffuse, uv.xy), 2.2); float4 outColor = float4(0, 0, 0, 1); float3 linearLightColor = pow(lightColor, 2.2) * lightBrightness; float3 diffusePoint = Kd * linearLightColor * diffuse * finalShadow; float lightmapAmount = tex2D(StretchTexture, uv.xy).b; float3 diffuseBlurred = Kd * tex2D(LightmapCombinedBllur, float2(uv.x, uv.y)).rgb; diffuseColor = blurJitteredWeights[0] diffusePoint + lerp((float3(1, 1, 1) – blurJitteredWeights[0]) * diffusePoint, diffuseBlurred, lightmapAmount); specular = KelemenSzirmauKalosSpec(normalize(viewVec), normal, lightVec, eccentricity, rolloff, weight); outColor.rgb = Ao * Ka * realModelColor + (diffuseColor * realModelColor + kS * linearLightColor * specular * finalShadow);
Data Preparation • 실사적인 결과물을 얻기 위해서는 스캔 데이터를 이용하는 것을 추천 • 데모에 사용된 머리는 XYZRGB로 스캔되었음 • Gamma correction이 핵심적으로 필요함 • 적절한 gamma correction이 diffuse map들에 적용되어야 한다. • Normal map이 중요함 • 실제 얼굴의 표면은 매우 울퉁불퉁하다. • Subsurface scattering은 모습을 부드럽게 한다.
Conclusion • 기존의 방법들(Doug Jones Demo)과 비슷한 결과물을 내면서 속도는 10배 정도 빠르다. • Xbox360에서 512x512 buffer blur step을 0.45ms에 실행한다. • Doug Jones Demo에 비해 품질이 떨어지는 부분이 있다. • “fleshiness” • 적은 커널을 사용함으로 red channel의 넓은 blur를 정확히 표현하지 못한다. • 미묘한 부분의 생략 • Stretching에 약간의 문제가 있음 • low stretch부분이 high stretch부분과 만나는 지점 • 알아차릴만한 blurring artifacts가 발생함 • 귀 주변과 같은 부분