1 / 18

Spectral Analysis of Decimetric Solar Bursts Variability

Spectral Analysis of Decimetric Solar Bursts Variability. R. R. Rosa 2 , F. C. R. Fernandes 1 , M. J. A. Bolzan 1 , H. S. Sawant 3 and M. Karlický 4 1 Instituto de Pesquisa e Desenvolvimento (IP&D) Universidade do Vale do Paraíba (UNIVAP) São José dos Campos, SP, Brazil

mizell
Download Presentation

Spectral Analysis of Decimetric Solar Bursts Variability

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Spectral Analysis of Decimetric Solar Bursts Variability R. R. Rosa2, F. C. R. Fernandes1, M. J. A. Bolzan1, H. S. Sawant3 and M. Karlický4 1Instituto de Pesquisa e Desenvolvimento (IP&D) Universidade do Vale do Paraíba (UNIVAP) São José dos Campos, SP, Brazil 2Laboratório Associado de Computação e Matemática Aplicada (LAC) 3Divisão de Astrofísica Instituto Nacional de Pesquisas Espaciais (INPE) São José dos Campos, SP, Brazil reinaldo.rosa@pq.cnpq.br 4Astronomical Institute Academy of Sciences of the Czech Republic Ondrejov, Czech Republic

  2. Outline • Decimetric Solar Bursts (DSB) • DSB Spectral Analysis • Classifying Variability Pattern Using the Var[C(L)] and H • A Case Study for Space Weather • Concluding Remarks

  3. Brazilian Solar Spectroscope (BSS) (INPE-São José dos Campos) • 1-2.5 GHz, 3MHz, 3ms, 2-3 s.f.u, 100 channels, 11:00-19:00 UT • http://www.das.inpe.br/fmi/intranet/news.php • Ondrejov Radio Observatory (Czech Republic) • 3GHz, 10ms, 4MHz • http://www.asu.cas.cz/~radio/ Decimetric Solar Bursts Data (Time Series):

  4. SFU Starting 17:13:51.48 UT 25/9/2001 1.6-2.0 GHz

  5. SFU SFU June 06 2000 16:34:00 UT 3GHz

  6. M. Karlický et al. • A&A 375, 638-642 (2001) • Rosa et al. • Adv Space Res 42 844–851(2008) -2 -1.92 logP(w) Log f Non-homogeneous scaling ptocess Previous Results from Spectral Analysis (Power Spectra) Power spectra: 1/f with 1.8 <   2 Complex scaling dynamics (hybrid components: plasma turbulence)   10% α=2(1-H) (Mandelbrot, 1985) H  αH

  7. Non-homogeneous Stochastic Process H and C(L) -1.92 C(L)  L- H = 1-(/2) Peitgen, Jurgen & Saupe Chaos and Fractals, Springer 1993 Var[C(L)] = (1/N)i (Ci - C)2 C(L) is the Auto-correlation function=> Non-stationary intermittent process Problem: Bias in  > 10% Estimating a more robust H … H : “Holder exponent” Non-homogeneous scaling function w(1/L)kH

  8. (H) N=1024 Dynamical Process Var(C)(5%) H White Noise 0.002 0.5 1/f2 0.089 0.6 1/f1.66 0.034 0.8 Lorenz 0.025 0.4 Multip0.0201.1 H : Wavelet Transform Modulus Maxima (WTMM) Halsey et al., PRA 33:1141, 1986; Arneodo et al; Physica A 213:232, 1995. “Singularity Spectrum” where αH (t0) is the Holder exponent (or singularity strength). Characterizes  Non-homogeneous multi-scaling process: p-Model p-Model: 1<H(L)<3

  9. N=L=1024 1.6GHz 2GHz 3GHz Dynamical Process Var(C)(5%) H (1%) White Noise 0.002 0.50 1/f2 0.089 0.60 1/f1.66 0.034 0.80 Lorenz 0.025 0.40 Multip0.0201.10 pModel 0.0151.20 1.6 GHz 0.0121.22 2.0 GHz 0.0101.22 3.0 GHz 0.079 1.22 1.6GHz and 2.0 GHz (6 TS) 3 GHz (1 TS)

  10. A Case Study for Space Weather Solar Flares are classified by their x-ray flux in the 1.0 - 8.0 Angstrom band as measured by the NOAA GOES-8 satellite. On June 6, 2000, two solar flares from active region 9026 registered as powerful X-class eruptions. http://science.nasa.gov/headlines/y2000/ast07jun_1m.htm

  11. June 6, 2000 solar flares (X2.3) 15:00-16:35 UT (NOAA AR 9026)

  12. Var[C(L)] = (1/N)i (Ci - C)2 1min before the flare

  13. Concluding Remarks: • This advanced spectral analysis suggested the influence of both, nonlinear oscillations in the magnetic field (A) + turbulent interaction between electron beams and evaporation shocks (B), on the decimetric radio emission energy source (turbulent non-homogeneous MHD p-model cascade) LAC - CTE http://epacis.orgwww.lac.inpe.br • The results suggest Var[C( L)] or Var[C] x H • as a new metric for Solar radio flux monitoring • VLADA (Virtual Lab for Advanced Data Analysis) (EMBRACE) Thank you for your attention.

  14. Time Series Analysis (High sensitivity): Gradient Pattern Analysis =16 V=9 g=9 =20 “Asymmetry Coefficient”: G= ( - g)/g and Limg G=2 Assireu et al, Physica D 168(1):397, 2002.

  15. G=1.82 G=1.87

  16. Escala local Escala global G= ( - g)/g G(ℓ)

  17. There are 16 time series with 1024 points – square matrices 32x32 The signal is decompose by Daubechies Discrete Wavelet (Db8) (see an example for 512 points) Gradient Spectra G(f)

  18. G =  1/N  [Gi (ℓ)-G(ℓ] Gradient Spectra for Turbulent-like Short Time Series

More Related