1 / 10

Solution Concentration Units

Solution Concentration Units. Units of Concentration 1. Molality ( m ) aka “molal concentration” Solvent= does not include solute Molarity ( M ) aka “molar concentration” Most common concentration unit in Chemistry. Solution=solute+solvent. Example.

mlowry
Download Presentation

Solution Concentration Units

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Solution Concentration Units

  2. Units of Concentration 1 • Molality (m) aka “molal concentration” Solvent= does not include solute • Molarity (M) aka “molar concentration” Most common concentration unit in Chemistry Solution=solute+solvent

  3. Example • What is the molarity of a solution prepared by dissolving 45.0 grams of NaCl in enough water to give a total volume of 489 mL? Na = 23 a.m.u. Cl = +35 a.m.u. 58 a.m.u. 1mol NaCl = 58g 45g X 1 mol = 0.7759 mol of NaCL 58g 0.7759 mol of NaCl = 1.6 M 0.489 L

  4. Example 12.3 • Calculate the molality of a sulfuric acid solution containing 24.4 g of sulfuric acid in 198 g of water. The molar mass of sulfuric acid is 98.08 g. • m = molal = moles of solute/mass solvent (kg) • Moles of H2SO4 = 24.4 g H2SO4 x (1 mol/98.09 g) = 0.249 mol H2SO4 • m = 0.249 mol H2SO4 / 0.198 kg H2O = 1.26 m

  5. Molality vs. Molarity • Molality is never equal to molarity • But the difference becomes smaller as solutions become moredilute(denominators are very similar) • Molarity is more useful when dealing with solution stoichiometry • Molality is more appropriate for dealing with physical chemistry • Question: which is temperature-dependent? • Molarity depends on temperature. Molarity will decrease as temperature increases since the amount of the solution will decrease (from evaporation). Temp  M • Molality does not depend on temperature since mass (kg) does not change with temperature

  6. Units of Concentration 2 • Mole Fraction ( ) • Percent by Volume (% w/v) AND Percent by Weight (%w/w)

  7. Example • Calculate the percent by weight NaCl in a solution comprised of 45.0 g NaCl and 457 g of water. % (w/w) = grams of solute x 100% = 45g x 100% = 8.96% grams of solution 502g Solute = 45g of NaCl Solution = 457g of NaCl (solute) + H2O (solvent) = 502g

  8. Mole Fraction Example • What is the mole fraction of each component in a solution in which 3.57 g of sodium chloride, NaCl, is dissolved in 25.0 g of water? • Need moles of NaCl: • 3.57 g NaCl x (1 mol NaCl/58.44 g NaCl) = 0.0611 mole NaCl • Need moles of water: • 25.0 g H2O x (1 mol H2O/18.02 g H2O) = 1.39 mol H2O • XNaCl = 0.0611 mol NaCl/(0.0611 + 1.39) = 0.0421 • Xwater = 1.39 mol H2O /(0.0611 + 1.39) = 0.958 • Always needs to equal 1!!!!!!!!!!!!

  9. Converting Between Units • Density can be a conversion factor between molarity and molality • The density of 2.45 M aqueous solution of methanol (CH3OH) is 0.976 g/mL. What is the molality of the solution? The molar mass is 32.04 g. • 1. Find the mass of water using density (D = m/V) • 1 L soln x (1000 mL / 1 L) x (0.976 g / 1 mL soln) = 976 g • 2. Knowing there are 2.45 moles of methanol • Mass of H2O = mass of soln – mass of solute • Mass = 976 – (2.45 mol CH3OH x (32.04 g CH3OH / 1 mol CH3OH)) = 898 g • 3. molal = 2.45 mol CH3OH / 0.898 kg H2O • Molal = 2.73 m

  10. Converting Between Units • Calculate the molality AND molarity of a 35.4 % (by mass) aqueous solution of phosphoric acid (H3PO4). The molar mass of phosphoric acid is 98.0 g. • It is convenient to assume one starts with 100 g, therefore 35.4 g is phosphoric acid and 64.6 g is water. • Molal = mol solute / kg solvent • 1. find moles of solute • 35.4g x (1 mol / 98.0 g) = 0.361 mol phosphoric acid • 2. find kg of solvent • 64.6 g = 0.0646 kg water • 3. find molality • 0.361 mol / 0.0646 kg = 5.59 m • Find molarity– you know moles (0.361 mol) and grams/ mL (64.6 g/mL or 0.0646 L): divide the two

More Related