1 / 23

Odds and Ends in Haskell: Folding, I/O, and Functors

Learn about folding functions in Haskell for recursion, I/O functions like putStrLn, and working with functors in this adapted material. Dive into practical examples and understand how to handle file I/O in Haskell effectively.

mmargie
Download Presentation

Odds and Ends in Haskell: Folding, I/O, and Functors

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Odds and Ends in Haskell: Folding, I/O, and Functors Adapted from material by Miran Lipovaca

  2. The foldl function We’ve seen a particular pattern quite often with lists: - base case on empty list - some operation with the head, plus a recursive call on the tail This is such a common pattern that there is a higher-order function to handle it. Inputs: a function, a initial starting value (which we’ll call the accumulator, although it can have any name) and a list to “fold up”

  3. Example: implementing the sum function sum'::(Numa)=>[a]->a sum'xs=foldl(\accx-> acc +x)0 xs The binary function is applied to the accumulator and the first element (in foldl), and produces a new accumulator. Then called again with the new accumulator and the new first element of the list, until the rest of the list is empty. ghci>sum'[3,5,2,1] 11

  4. In fact, we can write this function in an even shorter way, since functions can be returned as parameters: sum'::(Numa)=>[a]->a sum'=foldl(+)0 The lambda function on the previous slide is really the same as (+), and we can omit xs because the function written above will just return a function that takes a list as input.

  5. Another example: elem Returns True if the variable is present in the list elem'::(Eqa)=>a->[a]->Bool elem'yys=foldl (\accx>ifx==ythenTrueelseacc) Falseys • - Starting value and accumulator are booleans. • Start (and default) is False, which makes sense. • Check if current element is what we want. If so, • done (so return True). Otherwise, accumulator is unchanged, and it continues on with the tail. 4

  6. Other functions: - Foldr is the same, except starts with the end of the list (and accumulator is the second input to the function). - Scanl and scanr work just the same, but return all intermediate accumulator values in a list. - foldl1 and foldr1 work just the same as foldl and foldr, but don’t need to provide a starting value - they assume first (or last) element of the list is the starting value.

  7. File I/O So far, we’ve worked mainly at the prompt, and done very little true input or output. This is logical in a functional language, since nothing has side effects! However, this is a problem with I/O, since the whole point is to take input (and hence change some value) and then output something (which requires changing the state of the screen or other I/O device. Luckily, Haskell offers work-arounds that separate the more imperative I/O.

  8. A simple example: save the following file as helloword.hs main=putStrLn"hello,world" Now we actually compile a program: $ghc--makehelloworld [1of1]CompilingMain (helloworld.hs,helloworld.o) Linkinghelloworld... $./helloworld hello,world 7

  9. What are these functions? ghci>:tputStrLn putStrLn::String->IO() ghci>:tputStrLn"hello,world" putStrLn"hello,world"::IO() So putStrLn takes a string and returns an I/O action (which has a result type of (), the empty tuple). In Haskell, an I/O action is one with a side effect - usually either reading or printing. Usually some kind of a return value, where () is a dummy value for no return. 8

  10. An I/O action will only be performed when you give it the name “main” and then run the program. A more interesting example: main=do putStrLn"Hello,what'syourname?”   name<-getLine putStrLn("Hey"++name++", yourock!") Notice the do statement - more imperative style. Each step is an I/O action, and these glue together. 9

  11. More on getLine: ghci>:tgetLine getLine::IOString This is the first I/O we’ve seen that doesn’t have an empty tuple type - it has a String. Once the string is returned, we use the <- to bind the result to the specified identifire. Notice this is the first non-functional action we’ve seen, since this function will NOT have the same value every time it is run! This is called “impure” code. 10

  12. An invalid example: nameTag="Hello,mynameis"++getLine What’s the problem? Well, ++ requires both parameters to have the same type. What is the return type of getLine? Another word of warning: what does the following do? name=getLine 11

  13. Just remember that I/O actions are only performed in a few possible places: • A main function • inside a bigger I/O block that we have composed with a do (and remember that the last action can’t be bound to a name, since that is the one that is the return type). • At the ghci prompt: ghci>putStrLn"HEEY" HEEY 12

  14. You can use let statements inside do blocks, to call other functions (and with no “in” part required): importData.Char main=do putStrLn"What'syourfirstname?" firstName<-getLine putStrLn"What'syourlastname?" lastName<-getLine letbigFirstName=maptoUpperfirstName bigLastName=maptoUpperlastName putStrLn$"hey"++bigFirstName++""++ bigLastName++",howareyou?" Note that <- is for I/O, and let for expressions. 13

  15. Return in haskell: NOT like other languages. main=do line<-getLine ifnullline thenreturn() elsedo putStrLn$reverseWordslinemain reverseWords::String->String reverseWords=unwords mapreverse.words 14

  16. What is return? Does NOT signal the end of execution! Return instead makes an I/O action out of a pure value. main=do a<-return"hell" b<-return"yeah!" putStrLn$a++""++b In essence, return is the opposite of <-. Instead of “unwrapping” I/O Strings, it wraps them. 15

  17. Other I/O functions: • print (works on any type in show, but calls show first) • putStr - And as putStrLn, but no newline • putChar and getChar main=doprintTrue print2 print"haha" print3.2 print[3,4,3] main=do c<-getChar ifc/='' thendo putCharc main elsereturn() 16

  18. More advanced functionality is available in Control.Monad: importControl.Monad importData.Char main=forever$do putStr"Givemesomeinput:" l<-getLine putStrLn$maptoUpperl (Will indefinitely ask for input and print it back out capitalized.) 17

  19. Functors Functors are a typeclass, just like Ord, Eq, Show, and all the others. This one is designed to hold things that can be mapped over; for example, lists are part of this typeclass. classFunctorfwhere fmap::(a->b)->fa->fb This type is interesting - not like previous exmaples, like in EQ, where (==) :: (Eq a) => a -> a -> Bool. Here, f is NOT a concrete type, but a type constructor that takes one parameter. 18

  20. Compare fmap to map: fmap::(a->b)->fa->fb map :: (a -> b) -> [a] -> [b] So map is a lot like a functor! Here, map takes a function and a list of type a, and returns a list of type b. In fact, can define map in terms of fmap: instanceFunctor[]where fmap=map 19

  21. Notice what we wrote: instanceFunctor[]where fmap=map We did NOT write “instance Functor [a] where…”, since f has to be a type constructor that takes one type. Here, [a] is already a concrete type, while [] is a type constructor that takes one type and can produce many types, like [Int], [String], [[Int]], etc. 20

  22. Another example: instanceFunctorMaybewhere fmapf(Justx)=Just(fx) fmapfNothing=Nothing Again, we did NOT write “instance Functor (Maybe m) where…”, since functor wants a type constructor. Mentally replace the f’s with Maybe, so fmap acts like (a -> b) -> Maybe a -> Maybe b. If we put (Maybe m), would have (a -> b) -> (Maybe m) a -> (Maybe m) b, which looks wrong. 21

  23. Using it: ghci>fmap(++"HEYGUYSIMINSIDETHE JUST")(Just"Somethingserious.") Just"Somethingserious.HEYGUYSIMINSIDETHEJUST" ghci>fmap(++"HEYGUYSIMINSIDETHE JUST")Nothing Nothing ghci>fmap(*2)(Just200) Just400 ghci>fmap(*2)Nothing Nothing 22

More Related